Rotation of Conics into Standard Form
If A, B, and C are constants, then the level curves of
are either lines, circles, ellipses, or hyperbolas. If B ¹ 0, then a
curve () is the image under rotation of a conic in
standard position in the uv-plane.
Specifically, (2) is the image of a conic in standard
position in the uv-plane of a rotation
|
é ê
ë
|
|
|
ù ú
û
|
= |
é ê
ë
|
|
|
ù ú
û
|
|
é ê
ë
|
|
|
ù ú
û
|
|
| (3) |
that maps the u-axis to a principal axis of the conic, which is a
line y = mx containing the points closest to or furthest from the origin.
Thus, Lagrange multipliers can be used to determine the equation y = mx of a
principal axis, after which replacing x and y by the rotation
transformation implied by (1) and (3) will rotate
a conic (2) into standard form.
EXAMPLE 7 Rotate the following conic into standard form:
Solution: Our goal is to find the extrema of the square of the
distance from a point ( x,y) to the origin, which is f(x,y) = x2+y2, subject to the constraint (4) The associated Lagrangian is
L( x,y,l) = x2 + y2 - l(5x2 - 3xy + 5y2 - 21) |
|
Since Lx = 2x-l( 10x-3y) and Ly = 2y-l(-3x+10y) , we must solve the equations
2x = l( 10x-6y) , 2y = l( -6x+10y) |
|
Since l cannot be zero since (0,0) cannot be a
critical point, we eliminate l using the ratio of the two equations:
|
2x
2y
|
= |
l( 10x-6y)
l(-6x+10y)
|
or |
x
y
|
= |
10x-6y
-6x+10y
|
|
|
Cross-multiplication yields 10xy-6x2 = 10xy-6y2 so that y2 = x2.
Thus, the principal axes - i.e., the lines containing the extrema - are
y = x and y = -x.
Using y = x means m = 1 and correspondingly,
|
é ê
ë
|
|
|
ù ú
û
|
= |
é ê
ë
|
|
|
ù ú
û
|
|
é ê
ë
|
|
|
ù ú
û
|
= |
1
Ö2
|
|
é ê
ë
|
|
|
ù ú
û
|
|
é ê
ë
|
|
|
ù ú
û
|
|
|
That is, x = ( u-v) /Ö2 and y = ( u+v) /Ö2, which upon substitution into (4) yields
5 |
æ è
|
|
u-v
Ö2
|
ö ø
|
2
|
-6 |
æ è
|
|
u-v
Ö2
|
ö ø
|
|
æ è
|
|
u+v
Ö2
|
ö ø
|
+5 |
æ è
|
|
u+v
Ö2
|
ö ø
|
2
|
|
|
|
|
|
5( u2-2uv+v2)
2
|
- |
6( u2-v2)
2
|
+ |
5( u2+2uv+v2)
2
|
|
|
|
|
5u2 + 5v2 - 6u2 + 6v2 + 5u2 + 5v2 |
|
|
|
|
|
|
|
Consequently, the ellipse (4) is a rotation of the
ellipse
as is shown below: