Rotations About the Origin   

Rotations about the origin through an angle q are linear transformations of the form 
T( u,v) = á u cos( q) - v sin(q) ,u sin( q) + v cos( q) ñ
(1)
The matrix of the rotation through an angle q is given by
R( q) = é
ê
ë
cos( q)
-sin( q)
sin( q)
cos( q)
ù
ú
û
when positive angles are those measured counterclockwise (see the exercises).           

EXAMPLE 5    Rotate the triangle with vertices ( 0,0), ( 2,0) , and ( 0,2) through an angle q = p/3 about the origin.       

Solution: To begin with, the matrix of the rotation is
R( q) = é
ê
ê
ê
ê
ê
ë
cos æ
è
 p
3
ö
ø
-sin æ
è
 p
3
ö
ø
sin æ
è
 p
3
ö
ø
cos æ
è
 p
3
ö
ø
ù
ú
ú
ú
ú
ú
û
= é
ê
ë
1/2
3/2
Ö3/2
1/2
ù
ú
û
so that the resulting linear transformation is given by
T æ
ç
è
u
v
ö
÷
ø
= é
ê
ë
1/2
3/2
Ö3/2
1/2
ù
ú
û
é
ê
ë
u
v
ù
ú
û
The point ( 0,0) is mapped to ( 0,0) . The point ( 2,0) is associated with [ 2,0] t, so that
T æ
ç
è
2
0
ö
÷
ø
= é
ê
ë
1/2
3/2
Ö3/2
1/2
ù
ú
û
é
ê
ë
2
0
ù
ú
û
= é
ê
ë
1
Ö3
ù
ú
û
That is, ( 2,0) is mapped to ( 1,Ö3) . Similarly, it can be shown that ( 0,2) is mapped to ( 3,1) :

       

Often rotations are used to put figures into standard form, and often this requires rotating a line y = mx onto the x-axis.
If we notice that m = tan(q), then it follows that
cos(q) = 1
 m2 + 1
sin(q) =  m
 m2 + 1
    
Thus, the rotation matrix for rotating the x-axis to the line y = mx is
é
ê
ë
cos( q)
-sin( q)
sin( q)
cos( q)
ù
ú
û
=  1
 m2 + 1
  é
ê
ë
1
-m
m
1
ù
ú
û
(1)
Conversely, rotation through an angle -q will rotate y = mx to the x-axis (and corresponds to using -m in place of m in (1) ).
EXAMPLE 6    Rotate the triangle with vertices at ( 0,0) , (1,2) , and ( -4,2) so that one edge lies along the x-axis.

Solution: The line through ( 0,0) and (1,2) is y = 2x, which implies that the rotation matrix is
é
ê
ë
cos( -q)
-sin( -q)
sin( -q)
cos( -q)
ù
ú
û
=  1
 22 + 1
é
ê
ë
1
2
-2
1
ù
ú
û
Thus, the point ( 1,2) is mapped to
T æ
ç
è
1
2
ö
÷
ø
=  1
Ö5
é
ê
ë
1
2
-2
1
ù
ú
û
é
ê
ë
1
2
ù
ú
û
= é
ê
ë
Ö5
0
ù
ú
û
while the point ( -1,4) is mapped to
T æ
ç
è
-4
2
ö
÷
ø
=  1
Ö5
é
ê
ë
1
2
-2
1
ù
ú
û
é
ê
ë
-4
2
ù
ú
û
= é
ê
ë
0
2Ö5
ù
ú
û
Notice that this reveals that that the triangle is a right triangle.

       

Check your reading: What is the image of (0,0) under a rotation about the origin?