1. Evaluate the line integral

$$\int_C x dy - y dx$$

where C is the curve $\mathbf{r}(t) = \langle 2t, 3t \rangle$, t in [0, 1].

Solution: The pullback yields

$$\int_{C} x dy - y dx = \int_{0}^{1} \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) dt$$
$$= \int_{0}^{1} 2t (3) - 3t (2) dt$$
$$= \int_{0}^{1} 0 dt$$
$$= 0$$

2. Test for exactness. If exact, find its potential: $\mathbf{F}(x,y) = \langle x^2 + y^2, xy \rangle$

Solution: Since $M = x^2 + y^2$, N = xy, and P = 0, the curl of **F** is given by

$$curl(\mathbf{F}) = \langle 0 - 0, 0 - 0, 2x - x \rangle \neq \mathbf{0}$$

Thus, the field is not conservative and thus does not have a potential.

3. Test for exactness. If exact, find its potential: $\mathbf{F}(x,y) = \langle \sin(x+y), \sin(x+y) \rangle$

Solution: Since $M = N = \sin(x + y)$ and P = 0, the curl of **F** is given by

$$curl(\mathbf{F}) = \langle 0 - 0, 0 - 0, \cos(x + y) - \cos(x + y) \rangle = \mathbf{0}$$

Thus, **F** is conservative and its potential is given by

$$U(x,y) = \int \sin(x+y) dx = -\cos(x+y) + C(y)$$

Since $U_y = \sin(x + y) = N$, the function C(y) must satisfy $C_y = 0$. Thus,

$$U\left(x,y\right) =-\cos \left(x+y\right) +G$$

for some constant G.

4. Test for exactness. If exact, find its potential: $\mathbf{F}(x,y,z) = \langle ye^x, e^x + 1, e^z \rangle$

1

Solution: The curl of **F** is given by

$$curl(\mathbf{F}) = \langle 0 - 0, 0 - 0, e^x - e^x \rangle = \mathbf{0}$$

Thus, the field is conservative and its potential is given by

$$U(x, y, z) = \int ye^{x} dx = ye^{x} + C(y, z)$$

However, $U_y = e^x + C_y$, so that

$$e^{x} + C_{y} = e^{x} + 1$$

$$C_{y} = 1$$

$$C = y + k(z)$$

Thus, the potential is given by $U\left(x,y,z\right)=ye^{x}+y+k\left(z\right)$. To determine k, we notice that

$$U_z = k'(z) = e^z$$
 \Longrightarrow $k(x) = e^z + G$

for some constant G. Thus, $U(x, y, z) = ye^x + y + e^z + G$.

5. Evaluate the integral below using the fundamental theorem for line integrals

$$\int_{(0.0.0)}^{(1,1,1)} (x+y+z) (dx+dy+dz)$$

Solution: The vector field is $\mathbf{F}(x, y, z) = \langle x + y + z, x + y + z, x + y + z \rangle$, which has a curl of

$$curl\left(\mathbf{F}\right) = \langle 1-1, 1-1, 1-1 \rangle = \mathbf{0}$$

Thus, the potential of \mathbf{F} is

$$U(x, y, z) = \int (x + y + z) dx = \frac{x^2}{2} + xy + xz + C(y, z)$$

Since $U_x = x + C_y$, we have

$$x + C_y = x + y + z$$

$$C_y = y + z$$

$$C = \frac{y^2}{2} + yz + k(z)$$

Thus, the potential at this point is

$$U(x, y, z) = \frac{x^2}{2} + xy + xz + \frac{y^2}{2} + yz + k(z)$$

However, $U_z = x + y + k'(z)$, so that

$$x + y + k'(z) = x + y + z$$
$$k'(z) = z$$
$$k = \frac{z^2}{2} + G$$

Thus, the potential is

$$U(x, y, z) = \frac{x^2}{2} + xy + xz + \frac{y^2}{2} + yz + \frac{z^2}{2} + G$$

and the line integral is

$$\int_{(0,0,0)}^{(1,1,1)} (x+y+z) (dx+dy+dz) = \frac{x^2}{2} + xy + xz + \frac{y^2}{2} + yz + \frac{z^2}{2} \Big|_{0}^{1}$$

$$= \frac{1}{2} + 1 + 1 + \frac{1}{2} + 1 + \frac{1}{2}$$

$$= \frac{9}{2}$$

6. Explain why the integral $\int_{(0,0,0)}^{(1,1,1)} x dy + y dx + z dz$ is independent of path. Then calculate the integral along two different paths from (0,0,0) to (1,1,1).

Solution: The vector field is $\mathbf{F}(x,y,z) = \langle y,x,z \rangle$. The curl of $\mathbf{F}(x,y,z)$ is

$$curl(\mathbf{F}) = \langle 0 - 0, 0 - 0, 1 - 1 \rangle = \mathbf{0}$$

so **F** is conservative. One path from (0,0,0) to (1,1,1) is given by

$$\mathbf{r}(t) = \langle t, t, t \rangle, \quad t \ in \ [0, 1]$$

The line integral over this curve is

$$\int_{(0,0,0)}^{(1,1,1)} x dy + y dx + z dz = \int_0^1 \left(x \frac{dy}{dt} + y \frac{dx}{dt} + z \frac{dz}{dt} \right) dt$$

$$= \int_0^1 3t dt$$

$$= \left. \frac{3t^2}{2} \right|_0^1$$

$$= \frac{3}{2}$$

Another curve that passes from (0,0,0) to (1,1,1) is given by

$$\boldsymbol{\rho}(t) = \left\langle t, t^2, t^3 \right\rangle, \quad t \ in \ [0, 1]$$

The line integral over this curve is

$$\int_{(0,0,0)}^{(1,1,1)} x dy + y dx + z dz = \int_{0}^{1} \left(x \frac{dy}{dt} + y \frac{dx}{dt} + z \frac{dz}{dt} \right) dt$$
$$= \int_{0}^{1} t (2t) + t^{2} (1) + t^{3} (3t^{2}) dt$$

$$= \int_0^1 3t^2 + 3t^5 dt$$

$$= t^3 + \frac{3t^6}{6} \Big|_0^1$$

$$= 1 + \frac{1}{2}$$

$$= \frac{3}{2}$$

7. Let R be the unit square. Use Green's theorem to evaluate the line integral

$$\oint_{\partial R} y^2 dx + x^2 dy$$

Solution: Green's theorem implies that

$$\oint_{\partial R} y^2 dx + x^2 dy = \iint_R \frac{\partial}{\partial x} (x^2) - \frac{\partial}{\partial y} (y^2) dA$$

$$= \iint_R (2x - 2y) dA$$

$$= \int_0^1 \int_0^1 (2x - 2y) dy dx$$

$$= 0$$

8. Let R denote the upper half of the unit disk. Evaluate using Green's theorem:

$$\oint_{\partial R} (xy) \left(dx + dy \right)$$

Solution: Green's theorem implies that

$$\oint_{\partial R} xy dx + xy dy = \iint_{R} \frac{\partial}{\partial x} (xy) - \frac{\partial}{\partial y} (xy) dA$$

$$= \iint_{R} (y - x) dA$$

$$= \int_{0}^{\pi} \int_{0}^{1} (r \sin(\theta) - r \cos(\theta)) r dr d\theta$$

$$= \int_{0}^{\pi} \int_{0}^{1} (r^{2} \sin(\theta) - r^{2} \cos(\theta)) dr d\theta$$

$$= \int_{0}^{\pi} \frac{r^{3}}{3} \sin(\theta) - \frac{r^{3}}{3} \cos(\theta) \Big|_{0}^{1} d\theta$$

$$= \frac{1}{3} \int_{0}^{\pi} (\sin(\theta) - \cos(\theta)) d\theta$$

$$= \frac{1}{3} (-\cos(\theta) - \sin(\theta)) \Big|_{0}^{\pi}$$

$$= \frac{2}{3}$$

9. Evaluate by using Green's theorem to convert to a line integral over the boundary (**D** is the unit disk):

$$\int \int_{\mathbf{D}} \frac{-x}{(x^2 + y^2 + 1)^{3/2}} dA$$

Solution: Let's let

$$N_x = \frac{-x}{(x^2 + y^2 + 1)^{3/2}},$$
 so that $N = \int \frac{-x}{(x^2 + y^2 + 1)^{3/2}} dx$

Letting $u = x^2 + y^2 + 1$ implies that du = -2xdx, and

$$N = \frac{-1}{2} \int \frac{du}{u^{3/2}} = \frac{1}{u^{1/2}} = \frac{1}{(x^2 + y^2 + 1)^{1/2}}$$

Thus, Green's theorem says that

$$\int \int_{\mathbf{D}} \frac{-x}{(x^2 + y^2 + 1)^{3/2}} dA = \oint_{\partial \mathbf{D}} \frac{1}{(x^2 + y^2 + 1)^{1/2}} dy$$

$$= \int_{0}^{2\pi} \frac{1}{(x^2 + y^2 + 1)^{1/2}} \frac{dy}{dt} dt$$

However, $x^2 + y^2 + 1 = 2$ on the unit circle, so that

$$\int_{\mathbf{D}} \frac{-x}{(x^2 + y^2 + 1)^{3/2}} dA = \frac{1}{\sqrt{2}} \int_{0}^{2\pi} \frac{dy}{dt} dt$$

$$= \frac{1}{\sqrt{2}} |y(t)|_{0}^{2\pi}$$

$$= \frac{1}{\sqrt{2}} (y(2\pi) - y(0))$$

Since the curve is closed—and thus, the endpoint and beginning point are the same—we must have $y(2\pi) = y(0)$. Thus,

$$\int \int_{\mathbf{D}} \frac{-x}{(x^2 + y^2 + 1)^{3/2}} dA = 0$$

10. Find the area enclosed by the curve $\mathbf{r}(t) = \langle \cos^2(t), \cos(t)\sin(t) \rangle$, t in $[0, \pi]$, using Green's theorem.

Solution: The area is given by

$$Area = \frac{1}{2} \oint_C x dy - y dx$$

$$= \frac{1}{2} \int_0^{\pi} \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) dt$$

$$= \frac{1}{2} \int_0^{\pi} \left(\cos^2(t) \left(-\sin(t)\sin(t) + \cos(t)\cos(t) \right) - \cos(t)\sin(t) \left(-2\cos(t)\sin(t) \right) \right) dt$$

$$= \frac{1}{2} \int_0^{\pi} \left(-\sin^2(t) \cos^2(t) + \cos^4(t) + 2 \cos^2(t) \sin^2(t) \right) dt$$

$$= \frac{1}{2} \int_0^{\pi} \cos^2(t) \left(\cos^2(t) + \sin^2(t) \right) dt$$

$$= \frac{1}{2} \int_0^{\pi} \cos^2(t) dt$$

$$= \frac{1}{2} \int_0^{\pi} \frac{1}{2} + \frac{1}{2} \cos(2t) dt$$

$$= \frac{1}{4} t + \frac{1}{8} \sin(2t) \Big|_0^{\pi}$$

$$= \frac{\pi}{4}$$

11. Calculate the surface area of the surface Σ parameterized by $\mathbf{r}(u, v) = \langle u \cos(v), u \sin(v), u^2 \rangle$ for u in [0, 1] and v in $[0, 2\pi]$.

Solution: To begin with, $\mathbf{r}_u = \langle \cos(v), \sin(v), 2u \rangle$ and $\mathbf{r}_v = \langle -u\sin(v), u\cos(v), 0 \rangle$. Their cross-product is

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = \left\langle -2u^{2} \cos\left(v\right), -2u^{2} \sin\left(v\right), u \right\rangle$$

Thus, $||\mathbf{r}_u \times \mathbf{r}_v||^2 = 4u^4 \cos^2(v) + 4u^4 \sin^2(v) + u^2 = 4u^4 + u^2$, so that

$$dS = \sqrt{4u^4 + u^2} du dv = u\sqrt{4u^2 + 1} dv du$$

The surface area is thus given by

$$S = \iint_{\Sigma} dS$$

$$= \int_0^1 \int_0^{2\pi} u\sqrt{4u^2 + 1} dv du$$

$$= 2\pi \int_0^1 u\sqrt{4u^2 + 1} du$$

We let $w = 4u^2 + 1$, so that dw = 8udu and

$$S = \frac{2\pi}{8} \int_{1}^{5} w^{1/2} dw = \frac{5\pi\sqrt{5}}{6} - \frac{\pi}{6}$$

12. Compute the flux of the vector field $\mathbf{F}(x,y,z)=\langle y,x,z\rangle$ through the surface Σ parameterized by

$$\mathbf{r}(u,v) = \langle u\cos(v), u\sin(v), u^2 \rangle, \quad u \text{ in } [0,1], \quad v \text{ in } [0,2\pi]$$

Solution: To begin with, $\mathbf{r}_{u} = \langle \cos(v), \sin(v), 2u \rangle$ and $\mathbf{r}_{v} = \langle -u \sin(v), u \cos(v), 0 \rangle$. Their cross-product is

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = \left\langle -2u^{2}\cos\left(v\right), -2u^{2}\sin\left(v\right), u\right\rangle$$

Thus, $d\mathbf{S} = \langle -2u^2 \cos(v), -2u^2 \sin(v), u \rangle dudv$ and

$$Flux = \iint_{\Sigma} \mathbf{F} \cdot d\mathbf{S}$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \langle y, z, x \rangle \cdot \mathbf{r}_{u} \times \mathbf{r}_{v} du dv$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \langle u \sin(v), u^{2}, u \cos(v) \rangle \cdot \langle -2u^{2} \cos(v), -2u^{2} \sin(v), u \rangle du dv$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \left(-2u^{3} \sin(v) \cos(v) - 2u^{4} \sin(v) + u^{2} \cos(v) \right) du dv$$

$$= \int_{0}^{2\pi} \left(-\frac{1}{2} \sin(v) \cos(v) - \frac{2}{5} \sin(v) + \frac{1}{3} \cos(v) \right) dv$$

$$= 0$$

13. Show that if $\mathbf{F}(x, y, z) = \langle xy + 2z, yz + 2x, xz + 2y \rangle$, then $\operatorname{curl}(\mathbf{F}) = \langle 2 - y, 2 - z, 2 - x \rangle$. Then evaluate

$$\iint\limits_{S}curl\left(\mathbf{F}\right) \cdot d\mathbf{S}$$

when S is the surface of the pyramid with vertices (2,0,0), (2,2,0), (0,2,0), (0,0,0), and (1,1,2) that is not contained in the xy-plane.

Solution: Stoke's theorem implies that

$$\iint_{S} curl\left(\mathbf{F}\right) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{B} curl\left(\mathbf{F}\right) \cdot d\mathbf{S}$$

where ∂S is the square with vertices (2,0,0), (2,2,0), (0,2,0), (0,0,0) and B is base $[0,2]\times[0,2]$ in the xy-plane. In the base B, the unit normal is the unit vector \mathbf{k} , so that

$$\iint_{S} curl(\mathbf{F}) \cdot d\mathbf{S} = \iint_{B} \langle 2 - y, 2 - z, 2 - x \rangle \cdot \mathbf{k} \, dy dx$$
$$= \int_{0}^{2} \int_{0}^{2} (2 - x) \, dy dx$$
$$= 4$$

14. Use Stoke's theorem for differential forms to calculate

$$\iint\limits_{\partial S} xy \ dy^{\hat{}} dz - z^2 \ dy^{\hat{}} dx$$

7

when S is the solid cube $[0,1] \times [0,1] \times [0,1]$.

Solution: Applying the d operator and using Stoke's theorem implies that

$$\iint_{\partial S} xy \, dy^{\hat{}} dz - z \, dy^{\hat{}} dx = \iiint_{S} d \left(xy \, dy^{\hat{}} dz - z \, dy^{\hat{}} dx \right)$$

$$= \iiint_{S} d \left(xy \right)^{\hat{}} dy^{\hat{}} dz - d \left(z^{2} \right)^{\hat{}} dy^{\hat{}} dx$$

$$= \iiint_{S} \left(y dx + x dy \right)^{\hat{}} dy^{\hat{}} dz - 2z \, dz^{\hat{}} dy^{\hat{}} dx$$

$$= \iiint_{S} y dx^{\hat{}} dy^{\hat{}} dz + x dy^{\hat{}} dy^{\hat{}} dz + 2z \, dy^{\hat{}} dz^{\hat{}} dx$$

$$= \iiint_{S} y dx^{\hat{}} dy^{\hat{}} dz - 2z \, dy^{\hat{}} dx^{\hat{}} dz$$

$$= \iiint_{S} \left(y + 2z \right) dx^{\hat{}} dy^{\hat{}} dz$$

$$= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \left(y + 2z \right) dx dy dz$$

$$= \frac{3}{2}$$

15. Compute the flux of the vector field $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$ through the surface of a sphere Σ with radius R centered at the origin. Then show that the divergence theorem produces the same result.

Solution: The unit sphere is parameterized by

$$\mathbf{r}(\phi,\theta) = \langle R\sin(\phi)\cos(\theta), R\sin(\phi)\sin(\theta), R\cos(\phi) \rangle, \quad \phi \ in \ [0,\pi], \quad \theta \ in \ [0,2\pi]$$

Thus, $\mathbf{r}_{\phi} = \langle R \cos(\phi) \cos(\theta), R \cos(\phi) \sin(\theta), -R \sin(\phi) \rangle$ and $\mathbf{r}_{\theta} = \langle -R \sin(\phi) \sin(\theta), R \sin(\phi) \cos(\phi) \cos(\phi) \rangle$ and

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \left\langle R^{2} \sin^{2}(\phi) \cos(\theta), R^{2} \sin^{2}(\phi) \sin(\phi), R^{2} \cos(\phi) \sin(\phi) \right\rangle$$
$$= R \sin(\phi) \left\langle R \sin(\phi) \cos(\theta), R \sin(\phi) \sin(\phi), R \cos(\phi) \right\rangle$$
$$= \left\langle x, y, z \right\rangle R \sin(\phi)$$

Thus, the flux is given by

$$Flux = \iint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{S}$$

$$= \iint_{\partial \Sigma} \langle x, y, z \rangle \cdot \langle x, y, z \rangle R \sin(\phi) d\phi d\theta$$

$$= \iint_{\partial \Sigma} \left(x^2 + y^2 + z^2 \right) R \sin(\phi) d\phi d\theta$$

However, if (x, y, z) is on the unit sphere, then $x^2 + y^2 + z^2 = R^2$ and

$$Flux = \iint_{\partial \Sigma} R^3 \sin(\phi) \, d\phi d\theta$$
$$= R^3 \int_0^{2\pi} \int_0^{\pi} \sin(\phi) \, d\phi d\theta$$
$$= 4\pi R^3$$

The divergence theorem, on the other hand, implies that

$$\iint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\Sigma} div (\mathbf{F}) dV$$

$$= \iiint_{\Sigma} \frac{\partial}{\partial x} x + \frac{\partial}{\partial y} y + \frac{\partial}{\partial z} z dV$$

$$= \iiint_{\Sigma} 3 dV$$

$$= 3 (Volume of sphere)$$

$$= 3 \frac{4\pi R^3}{3}$$

$$= 4\pi R^3$$