1. Evaluate the line integral
    ó
    õ


    C 
    xdy-ydx
    where C is the curve r( t) = á2t,3t ñ , t in [ 0,1] .
    Solution: The pullback yields
    ó
    õ


    C 
    xdy-ydx
    =
    ó
    õ
    1

    0 
    æ
    è
    x  dy
    dt
    -y  dx
    dt
    ö
    ø
    dt
    =
    ó
    õ
    1

    0 
    2t( 3) -3t( 2) dt
    =
    ó
    õ
    1

    0 
    0dt
    =
    0
  2. Test for exactness. If exact, find its potential: F(x,y) = á x2+y2,xy ñ
    Solution: Since M = x2+y2, N = xy, and P = 0, the curl of F is given by
    curl( F) = á 0-0,0-0,2x-x ñ ¹ 0
    Thus, the field is not conservative and thus does not have a potential.
  3. Test for exactness. If exact, find its potential: F(x,y) = á sin( x+y) ,sin( x+y) ñ
    Solution: Since M = N = sin( x+y) and P = 0, the curl of F is given by
    curl( F) = á 0-0,0-0,cos( x+y)-cos( x+y) ñ = 0
    Thus, F is conservative and its potential is given by
    U( x,y) = ó
    õ
    sin( x+y) dx = -cos( x+y)+C( y)
    Since Uy = sin( x+y) = N, the function C( y) must satisfy Cy = 0. Thus,
    U( x,y) = -cos( x+y) +G
    for some constant G.
  4. Test for exactness. If exact, find its potential: F(x,y,z) = á yex,ex+1,ez ñ
    Solution:The curl of F is given by
    curl( F) = á 0-0,0-0,ex-ex ñ = 0
    Thus, the field is conservative and its potential is given by
    U( x,y,z) = ó
    õ
    yexdx = yex+C( y,z)
    However, Uy = ex+Cy, so that
    ex+Cy
    =
    ex+1
    Cy
    =
    1
    C
    =
    y+k( z)
    Thus, the potential is given by U( x,y,z) =  yex+y+k(z) . To determine k, we notice that
    Uz = k¢( z) = ez        Þ        k( x) = ez+G
    for some constant G. Thus, U( x,y,z) =  yex+y+ez+G.
  5. Evaluate the integral below using the fundamental theorem for line integrals
    ó
    õ
    ( 1,1,1)

    ( 0,0,0)  
    ( x+y+z) (dx+dy+dz)
    Solution: The vector field is F( x,y,z) = á x+y+z, x+y+z, x+y+z ñ , which has a curl of
    curl( F) = á 1-1,1-1,1-1 ñ = 0
    Thus, the potential of F is
    U( x,y,z) = ó
    õ
    ( x+y+z) dx =  x2
    2
    +xy+xz+C( y,z)
    Since Ux = x+Cy, we have
    x+Cy
    =
    x+y+z
    Cy
    =
    y+z
    C
    =
     y2
    2
    +yz+k( z)
    Thus, the potential at this point is
    U( x,y,z) =  x2
    2
    +xy+xz+  y2
    2
    +yz+k(z)
    However, Uz = x+y+k¢( z) , so that
    x+y+k¢( z)
    =
    x+y+z
    k¢( z)
    =
    z
    k
    =
     z2
    2
    +G
    Thus, the potential is
    U( x,y,z) =  x2
    2
    +xy+xz+  y2
    2
    +yz+  z2
    2
    +G
    and the line integral is
    ó
    õ
    ( 1,1,1)

    ( 0,0,0)  
    ( x+y+z) (dx+dy+dz)
    =
     x2
    2
    +xy+xz+  y2
    2
    +yz+  z2
    2
    ê
    ê
    1

    0 
    =
     1
    2
    +1+1+  1
    2
    +1+  1
    2
    =
     9
    2
  6. Explain why the integral ò( 0,0,0) (1,1,1) xdy+ydx+zdz is independent of path. Then calculate the integral along two different paths from ( 0,0,0) to (1,1,1) .
    Solution: The vector field is F( x,y,z) = á y,x,z ñ . The curl of F(x,y,z) is
    curl( F) = á 0-0,0-0,1-1 ñ = 0
    so F is conservative. One path from ( 0,0,0) to ( 1,1,1) is given by
    r( t) = á t,t,t ñ ,       t  in  [ 0,1]
    The line integral over this curve is
    ó
    õ
    ( 1,1,1)

    ( 0,0,0)  
    xdy+ydx+zdz
    =
    ó
    õ
    1

    0 
    æ
    è
    x  dy
    dt
    +y  dx
    dt
    +z  dz
    dt
    ö
    ø
    dt
    =
    ó
    õ
    1

    0 
    3tdt
    =
     3t2
    2
    ê
    ê
    1

    0 
    =
     3
    2
    Another curve that passes from ( 0,0,0) to (1,1,1) is given by
    r( t) = á t,t2,t3 ñ,        t  in  [ 0,1]
    The line integral over this curve is
    ó
    õ
    ( 1,1,1)

    ( 0,0,0)  
    xdy+ydx+zdz
    =
    ó
    õ
    1

    0 
    æ
    è
    x  dy
    dt
    +y  dx
    dt
    +z  dz
    dt
    ö
    ø
    dt
    =
    ó
    õ
    1

    0 
    t( 2t) +t2( 1) +t3(3t2) dt
    =
    ó
    õ
    1

    0 
    3t2+3t5dt
    =
    t3+  3t6
    6
    ê
    ê
    1

    0 
    =
    1+  1
    2
    =
     3
    2
  7. Let R be the unit square. Use Green's theorem to evaluate the line integral


    R 
    y2dx+x2dy
    Solution: Green's theorem implies that


    R 
    y2dx+x2dy
    =
    ó
    õ
    ó
    õ

    R
     
    x
    ( x2) -  
    y
    ( y2) dA
    =
    ó
    õ
    ó
    õ

    R
    ( 2x-2y) dA
    =
    ó
    õ
    1

    0 
    ó
    õ
    1

    0 
    ( 2x-2y) dydx
    =
    0
  8. Let R denote the upper half of the unit disk. Evaluate using Green's theorem:



    R 
    ( xy) ( dx+dy)
    Solution: Green's theorem implies that


    R 
    xydx+xydy
    =
    ó
    õ
    ó
    õ

    R
     
    x
    (xy) -  
    y
    ( xy) dA
    =
    ó
    õ
    ó
    õ

    R
      ( y-x) dA
    =
    ó
    õ
    p

    0 
    ó
    õ
    1

    0 
    ( rsin( q) -rcos( q) ) rdrdq
    =
    ó
    õ
    p

    0 
    ó
    õ
    1

    0 
    ( r2sin( q)-r2cos( q) ) drdq
    =
    ó
    õ
    p

    0 
     r3
    3
    sin( q) -  r3
    3
    cos( q) ê
    ê
    1

    0 
    dq
    =
     1
    3
    ó
    õ
    p

    0 
    ( sin( q) -cos(q) ) dq
    =
     1
    3
    ( -cos( q) -sin( q) ) | 0p
    =
     2
    3
  9. Evaluate by using Green's theorem to convert to a line integral over the boundary (D is the unit disk): 
    ó
    õ
    ó
    õ


    D 
     -x
    ( x2+y2+1) 3/2
    dA
    Solution: Let's let
    Nx =  -x
    ( x2+y2+1) 3/2
    ,       so  that    N = ó
    õ
     -x
    ( x2+y2+1) 3/2
    dx
    Letting u = x2+y2+1 implies that du = -2xdx, and
    N =  -1
    2
    ó
    õ
     du
    u3/2
    =  1
    u1/2
    =  1
    (x2+y2+1) 1/2
    Thus, Green's theorem says that
    ó
    õ
    ó
    õ


    D 
     -x
    ( x2+y2+1) 3/2
    dA
    =
    ó
    (ç)
    õ



    D 
     1
    ( x2+y2+1) 1/2
    dy
    =
    ó
    õ
    2p

    0 
     1
    ( x2+y2+1) 1/2
     dy
    dt
    dt
    However, x2+y2+1 = 2 on the unit circle, so that
    ó
    õ
    ó
    õ


    D 
     -x
    ( x2+y2+1) 3/2
    dA
    =
     1
    Ö2
    ó
    õ
    2p

    0 
     dy
    dt
    dt
    =
     1
    Ö2
    y( t) | 02p
    =
     1
    Ö2
    ( y( 2p) -y( 0) )
    Since the curve is closed-and thus, the endpoint and beginning point are the same-we must have y( 2p) = y( 0) . Thus,
    ó
    õ
    ó
    õ


    D 
     -x
    ( x2+y2+1) 3/2
    dA = 0
  10. Find the area enclosed by the curve r( t) = á cos2( t) ,cos( t) sin(t) ñ , t in [ 0,p] , using Green's theorem.
    Solution: The area is given by
    Area
    =
     1
    2


    C 
    xdy-ydx
    =
     1
    2
    ó
    õ
    p

    0 
    æ
    è
    x  dy
    dt
    -y  dx
    dt
    ö
    ø
    dt
    =
     1
    2
    ó
    õ
    p

    0 
    ( cos2( t) ( -sin( t) sin( t) +cos( t) cos(t) ) -cos( t) sin( t) ( -2cos( t) sin( t) ) ) dt
    =
     1
    2
    ó
    õ
    p

    0 
    ( -sin2( t) cos2( t) +cos4( t) +2cos2( t)sin2( t) ) dt
    =
     1
    2
    ó
    õ
    p

    0 
    cos2( t) ( cos2(t) +sin2( t) ) dt
    =
     1
    2
    ó
    õ
    p

    0 
    cos2( t) dt
    =
     1
    2
    ó
    õ
    p

    0 
     1
    2
    +  1
    2
    cos( 2t) dt
    =
     1
    4
    t+  1
    8
    sin( 2t) ê
    ê
    p

    0 
    =
     p
    4
  11. Calculate the surface area of the surface S parameterized by r( u,v) = á ucos( v) ,usin( v) ,u2 ñ for u in [ 0,1] and v in [ 0,2p] .
    Solution: To begin with, ru = á cos(v) ,sin( v) ,2u ñ and rv = á -usin( v) ,ucos( v),0 ñ . Their cross-product is
    ru×rv = á -2u2cos( v) , -2u2sin( v) , u ñ
    Thus, | | ru×rv| |2 = 4u4cos2( v) +4u4sin2( v)+u2 = 4u4+u2, so that
    dS =
    4u2+1
     dudv = u
    4u2+1
     dvdu
    The surface area is thus given by
    S
    =
    ó
    õ
    ó
    õ

    S
    dS
    =
    ó
    õ
    1

    0 
    ó
    õ
    2p

    0 
    u
    4u2+1
     dvdu
    =
    2p ó
    õ
    1

    0 
    u
    4u2+1
     du
    We let w = 4u2+1, so that dw = 8udu and
    S =  2p
    8
    ó
    õ
    5

    1 
    w1/2dw =  5pÖ5
    6
    -  p
    6
  12. Compute the flux of the vector field F( x,y,z) = á y,x,z ñ through the surface S parameterized by
    r( u,v) = á ucos( v) ,usin( v) ,u2 ñ ,        u  in  [ 0,1],    v  in  [ 0,2p]
    Solution: To begin with, ru = á cos(v) ,sin( v) ,2u ñ and rv = á -usin( v) ,ucos( v),0 ñ . Their cross-product is
    ru×rv = á  -2u2cos( v) ,-2u2sin( v) ,u ñ
    Thus, dS = á  -2u2cos( v),-2u2sin( v) ,u ñ dudv and
    Flux
    =
    ó
    õ
    ó
    õ

    S
    F·dS
    =
    ó
    õ
    2p

    0 
    ó
    õ
    1

    0 
    á y,z,x ñ ·ru×rvdudv
    =
    ó
    õ
    2p

    0 
    ó
    õ
    1

    0 
    á usin( v),u2,ucos( v) ñ · á \allowbreak-2u2cos( v) ,-2u2sin( v) ,u ñ dudv
    =
    ó
    õ
    2p

    0 
    ó
    õ
    1

    0 
    ( -2u3sin( v) cos( v) -2u4sin( v) +u2cos( v)) dudv
    =
    ó
    õ
    2p

    0 
    æ
    è
    -  1
    2
    sin( v) cos(v) -  2
    5
    sin( v) +  1
    3
    cos( v) ö
    ø
    dv
    =
    0
  13. Show that if F( x,y,z) = áxy+2z,yz+2x,xz+2y ñ , then curl( F) = á 2-y,2-z,2-x ñ . Then evaluate
    ó
    õ
    ó
    õ

    S
     curl( F) · dS
    when S is the surface of the pyramid with vertices ( 2,0,0) , ( 2,2,0) , ( 0,2,0) , ( 0,0,0) , and ( 1,1,2) that is not contained in the xy-plane.
    Solution: Stoke's theorem implies that
    ó
    õ
    ó
    õ

    S
    curl( F) ·dS =

    S 
    F·dr ó
    õ
    ó
    õ

    B
     curl( F) · dS
    where S is the square with vertices ( 2,0,0) , ( 2,2,0) , ( 0,2,0) , ( 0,0,0) and B is base [ 0,2] ×[ 0,2] in the xy-plane. In the base B, the unit normal is the unit vector k, so that
    ó
    õ
    ó
    õ

    S
    curl( F) ·dS
    =
    ó
    õ
    ó
    õ

    B
    á2-y,2-z,2-x ñ ·k  dydx
    =
    ó
    õ
    2

    0 
    ó
    õ
    2

    0 
    ( 2-x) dydx
    =
    4
  14. Use Stoke's theorem for differential forms to calculate
    ó
    õ
    ó
    õ

    S
    xy  dy^dz-z2  dy^dx
    when S is the solid cube [ 0,1] ×[ 0,1]×[ 0,1] .
    Solution: Applying the d operator and using Stoke's theorem implies that
    ó
    õ
    ó
    õ

    S
    xy  dy^dz-z  dy^dx
    =
    ó
    õ
    ó
    õ

    S
    d( xy  dy^dz-z  dy^dx)
    =
    ó
    õ
    ó
    õ

    S
    d( xy) ^dy^dz-d(z2) ^dy^dx
    =
    ó
    õ
    ó
    õ

    S
    ( ydx+xdy) ^dy^dz-2z  dz^dy^dx
    =
    ó
    õ
    ó
    õ

    S
    ydx^dy^dz+xdy^dy^dz+2z  dy^dz^dx
    =
    ó
    õ
    ó
    õ

    S
    ydx^dy^dz-2z  dy^dx^dz
    =
    ó
    õ
    ó
    õ

    ( y+2z) dx^dy^dz
    =
    ó
    õ
    1

    0 
    ó
    õ
    1

    0 
    ó
    õ
    1

    0 
    ( y+2z) dxdydz
    =
     3
    2
  15. Compute the flux of the vector field F( x,y,z) = á x,y,z ñ through the surface of a sphere S with radius R centered at the origin. Then show that the divergence theorem produces the same result.
    Solution: The unit sphere is parameterized by
    r( f,q) = á Rsin( f) cos( q) ,Rsin( f) sin(q) ,Rcos( f) ñ ,    f  in  [ 0,p] ,    q  in  [ 0,2p]
    Thus, rf = á Rcos( f) cos(q) ,Rcos( f) sin( q) ,-Rsin( f) ñ and rq = á-Rsin( f) sin( q) ,Rsin( f) cos( q) ,0 ñ and
    rf×rq
    =
    á R2sin2( f) cos( q) ,R2sin2(f) sin( f) ,R2cos( f) sin( f) ñ
    =
    Rsin( f) á Rsin( f) cos( q) ,Rsin( f) sin( f),Rcos( f) ñ
    =
    á x,y,z ñ Rsin( f)
    Thus, the flux is given by
    Flux
    =
    ó
    õ
    ó
    õ

    ¶S
    F·dS
    =
    ó
    õ
    ó
    õ

    ¶S
    á x,y,z ñ · á x,y,z ñ  Rsin( f) dfdq
    =
    ó
    õ
    ó
    õ

    ¶S
    ( x2+y2+z2)  Rsin(f) dfdq

    However, if ( x,y,z) is on the unit sphere, then x2+y2+z2 = R2 and
    Flux
    =
    ó
    õ
    ó
    õ

    ¶S
    R3sin( f) dfdq
    =
    R3 ó
    õ
    2p

    0 
    ó
    õ
    p

    0 
    sin( f) dfdq
    =
    4pR3
    The divergence theorem, on the other hand, implies that
    ó
    õ
    ó
    õ

    ¶S
    F·dS
    =
    ó
    õ
    ó
    õ
    ó
    õ

    S
     div( F) dV
    =
    ó
    õ
    ó
    õ
    ó
    õ

    S
     
    x
    x+  
    y
    y+  
    z
    zdV
    =
    ó
    õ
    ó
    õ
    ó
    õ

    S
    3dV
    =
    3( Volume  of  sphere)
    =
    3  4pR3
    3
    =
    4pR3