1. Evaluate the line integral

$$\int_C x dy - y dx$$

where C is the curve $\mathbf{r}(t) = \langle 2t, 3t \rangle$, t in [0, 1].

- 2. Test for exactness. If exact, find its potential: $\mathbf{F}(x,y) = \langle x^2 + y^2, xy \rangle$
- 3. Test for exactness. If exact, find its potential: $\mathbf{F}(x,y) = \langle \sin(x+y), \sin(x+y) \rangle$
- 4. Test for exactness. If exact, find its potential: $\mathbf{F}(x,y,z) = \langle ye^x, e^x + 1, e^z \rangle$
- 5. Evaluate the integral below using the fundamental theorem for line integrals

$$\int_{(0,0,0)}^{(1,1,1)} (x+y+z) (dx+dy+dz)$$

- 6. Explain why the integral $\int_{(0,0,0)}^{(1,1,1)} x dy + y dx + z dz$ is independent of path. Then calculate the integral along two different paths from (0,0,0) to (1,1,1).
- 7. Let R be the unit square. Use Green's theorem to evaluate the line integral

$$\oint_{\partial R} y^2 dx + x^2 dy$$

8. Let R denote the upper half of the unit disk. Evaluate using Green's theorem:

$$\oint_{\partial R} (xy) \left(dx + dy \right)$$

9. Evaluate by using Green's theorem to convert to a line integral over the boundary (**D** is the unit disk):

$$\int \int_{\mathbf{D}} \frac{-x}{(x^2 + y^2 + 1)^{3/2}} dA$$

- 10. Find the area enclosed by the curve $\mathbf{r}(t) = \langle \cos^2(t), \cos(t)\sin(t) \rangle$, t in $[0, \pi]$, using Green's theorem.
- 11. Calculate the surface area of the surface Σ parameterized by $\mathbf{r}(u, v) = \langle u \cos(v), u \sin(v), u^2 \rangle$ for u in [0, 1] and v in $[0, 2\pi]$.
- 12. Compute the flux of the vector field $\mathbf{F}(x, y, z) = \langle y, x, z \rangle$ through the surface Σ parameterized by

$$\mathbf{r}(u,v) = \langle u\cos(v), u\sin(v), u^2 \rangle, \quad u \text{ in } [0,1], \quad v \text{ in } [0,2\pi]$$

13. Show that if $\mathbf{F}(x, y, z) = \langle xy + 2z, yz + 2x, xz + 2y \rangle$, then $\operatorname{curl}(\mathbf{F}) = \langle 2 - y, 2 - z, 2 - x \rangle$. Then evaluate

$$\iint_{S} curl\left(\mathbf{F}\right) \cdot d\mathbf{S}$$

when S is the surface of the pyramid with vertices (2,0,0), (2,2,0), (0,2,0), (0,0,0), and (1,1,2) that is not contained in the xy-plane.

14. Use Stoke's theorem for differential forms to calculate

$$\iint\limits_{\partial S} xy \ dy^{\hat{}} dz - z^2 \ dy^{\hat{}} dx$$

when S is the solid cube $[0,1] \times [0,1] \times [0,1]$.

15. Compute the flux of the vector field $\mathbf{F}(x,y,z) = \langle x,y,z \rangle$ through the surface of a sphere Σ with radius R centered at the origin. Then show that the divergence theorem produces the same result.