Part 3: Line Integrals using the Arclength Parameter

Finally, recall that the speed of r( t) = á x( t) ,y( t) ,z( t) ñ , t in [ a,b] , is given by
 ds
dt
 = 
   æ
è
dx
dt
ö
ø
2

 
  æ
è
dy
dt
ö
ø
2

 
  æ
è
dz
dt
ö
ø
2

 
(5)
where ds is the arclength differential. As a result, if a line integral has the arclength differential ds, then
ó
õ


C 
f( x,y) ds = ó
õ
b

a 
f( x,y)  ds
dt
 dt
where ds/dt is as given in (5).

EXAMPLE 5    Suppose that C is parameterized by r( t) = á 3cos(t), 3sin(t), 4t ñ for t in [ 0,2p] . Evaluate
ó
õ


C 
x2ds
Solution: To do so, we notice that the velocity vector is
v( t) = á -3sin( t) ,3cos(t) ,4 ñ
so that the speed is
 ds
dt
 = 
9sin2( t) +9cos2( t) +16
 = 5
Thus, the integral is
ó
õ


C 
x2ds
=
ó
õ
2p

0 
x2  ds
dt
  dt
=
ó
õ
2p

0 
9cos2( t)   5  dt
=
45 ó
õ
2p

0 
é
ë
 1
2
+  1
2
cos( 2t) ù
û
dt
=
 45p
2

       

Line integration with respect to arclength provides an alternative means of expressing the line integrals considered above. For example, if a smooth curve C is parameterized by r( t) , t in [ a,b] , then recall that
 dr
dt
= T  ds
dt
where T( t) is the unit tangent vector at time t and ds/dt is the speed. As a result, the work integral becomes
Work = ó
õ


C 
F·dr = ó
õ
b

a 
F·  dr
dt
dt = ó
õ
b

a 
F·T  ds
dt
dt = ó
õ


C 
F·T  ds
That is, the work integral also can be written in the form
Work = ó
õ


C 
F·T  ds
(6)

       

EXAMPLE 6    Use (6) to find the work done by an object moving through a 2-dimensional vector field F(x,y) = á -y,x ñ along the circle C parameterized by
r( t) = á cos( t2) ,sin( t2) ñ ,  t  in   é
ë
0,
2p
ù
û
   

Solution: The velocity of the curve is v( t) = á -2tsin( t2) ,2tcos( t2) ñ . It follows that the speed is ds/dt = 2t and the unit tangent vector is T = á -sin( t2) ,cos( t2) ñ . Thus, (6) becomes
Work = ó
õ


C 
F·T  ds = ó
õ
Ö
2p
F·T   ds
dt
dt
0
Since x = cos( t2) and y = sin( t2) , the vector field on the circle is F = á -y,x ñ = á -sin( t2) ,cos( t2) ñ , from which we obtain
Work
=
ó
õ
Ö
2p
á -sin( t2) ,cos( t2) ñ · á -sin(t2) ,cos( t2) ñ   2tdt
0
=
ó
õ
Ö
2p
( sin2( t2) +cos2( t2) )   2tdt
0
=
ó
õ
Ö
2p
  2tdt
0
=
2p

       

Check your Reading: What is the orientation of the circle in example 6?