1. Evaluate the iterated integral
    ó
    õ
    p

    0 
    ó
    õ
    x

    0 
    sin( x) dydx
    Solution: First we evaluate inner integral:
    ó
    õ
    p

    0 
    ó
    õ
    x

    0 
    sin( x) dydx = ó
    õ
    p

    0 
    sin( x) y| 0xdx = ó
    õ
    p

    0 
    xsin(x) dx
    and then integration by parts with u = x and dv = sin( x) dx yields
    ó
    õ
    p

    0 
    ó
    õ
    x

    0 
    sin( x) dydx = -xcos(x p

    0 
     +  ó
    õ
    p

    0 
    cos( x) dx = p
  2. Find the volume of the solid bound between z = 0 and z = x+2y over
    R:
    x = 0
    y = 0
    x = 2
    y = x2
    Solution: As a triple integral, we have
    V = ó
    õ
    ó
    õ
    ó
    õ


    S 
    dV = ó
    õ
    2

    0 
    ó
    õ
    x2

    0 
    ó
    õ
    x+2y

    0 
    dzdydx = ó
    õ
    2

    0 
    ó
    õ
    x2

    0 
    ( x+2y) dydx =  52
    5
  3. Evaluate the following iterated integral by changing it from a Type I to a type II or vice versa:
    ó
    õ
    p

    0 
    ó
    õ
    p

    x 
     sin( y)
    y
    dydx
    Solution: First, we convert to double integral over region R.
    ó
    õ
    p

    0 
    ó
    õ
    p

    x 
     sin( y)
    y
    dydx = ó
    õ
    ó
    õ


    R 
     sin( y)
    y
    dA
    The region R in type II is given by y = 0, y = p, x = 0, x = y, so that
    ó
    õ
    p

    0 
    ó
    õ
    p

    x 
     sin( y)
    y
    dydx
    =
    ó
    õ
    ó
    õ


    R 
     sin( y)
    y
    dA
    =
    ó
    õ
    p

    0 
    ó
    õ
    y

    0 
     sin( y)
    y
    dxdy
    =
    ó
    õ
    p

    0 
     sin( y)
    y
    y  dy
    =
    ó
    õ
    p

    0 
    sin( y) dy
    =
    2
  4. Evaluate the following iterated integral by changing it from a Type I to a Type II or vice versa:
    ó
    õ
    1

    0 
    ó
    õ
    1-x

    0 
    sec2( 2y-y2) dydx
    Solution: Convert to double integral over region R, which in type II is given by y = 0, y = 1, x = 0, x = 1-y.
    ó
    õ
    1

    0 
    ó
    õ
    1-x

    0 
    sec2( 2y-y2) dydx
    =
    ó
    õ
    ó
    õ


    R 
    sec2( 2y-y2) dA
    =
    ó
    õ
    1

    0 
    ó
    õ
    1-y

    0 
    sec2( 2y-y2) dxdy
    =
    ó
    õ
    1

    0 
    sec2( 2y-y2)   ( 1-y) dy
    Now we let u = 2y-y2 and du = 2-2y , so that u( 0) = 0 and u( 1) = 1 and
    ó
    õ
    1

    0 
    ó
    õ
    1-x

    0 
    sec2( 2y-y2) dydx
    =
    ó
    õ
    ó
    õ


    R 
    sec2( 2y-y2) dA
    =
    ó
    õ
    1

    0 
    sec2( 2y-y2)   ( 1-y) dy
    =
     1
    2
    ó
    õ
    1

    0 
    sec2( u) du
    =
     1
    2
    tan( 1)
  5. Find the mass of the cylinder between z = 0 and z = 1 over the interior of the unit circle if its mass density is given by r(x,y,z) = | y| .
    Solution: The mass is given by the triple integral
    M
    =
    ó
    õ
    ó
    õ
    ó
    õ


    S 
    r( x,y,z) dV
    =
    ó
    õ
    1

    -1 
    ó
    õ
    Ö
    1-x2


    -Ö
    1-x2
    ó
    õ
    1

    0 
    |y| dzdydx
    =
    ó
    õ
    1

    -1 
    ó
    õ
    Ö
    1-x2

     

    -Ö
    1-x2
    | y| dydx
    =
    2 ó
    õ
    1

    -1 
    ó
    õ
    Ö
    1-x2


    0 
    ydydx
    =
    2 ó
    õ
    1

    -1 
     y2
    2
    ê
    ê
    Ö
    1-x2


    0 
    dx
    =
    ó
    õ
    1

    -1 
    ( 1-x2) dx
    =
     4
    3
  6. What is the volume of the polyhedron with vertices (0,0,0) , ( 1,0,0) , ( 0,1,0) , (1,1,0) , ( 0,0,1) , and ( 1,0,1) ?
    Solution:The solid is a ''wedge'' bound between the xy-plane and the plane passing through the points ( 0,1,0) , (1,1,0) , ( 0,0,1) , and ( 1,0,1) . The equation of the latter plane is easily shown to be z = 1-y.
    The region in the xy-plane over which the solid is defined is simply the unit square, so that
    V = ó
    õ
    1

    0 
    ó
    õ
    1

    0 
    ó
    õ
    1-y

    0 
    dzdxdy =  1
    2
  7. Suppose that the probability density for the time required to complete the ``A'' component of an exam is given by
    pA( x) = ì
    ï
    í
    ï
    î
    0
    if
    x < 0
     1
    30
    e-x/30
    if
    x ³ 0
    (time in minutes). Suppose the event of completing the ``B'' component of the exam has the same density. If the completion of the A and B sections are independent events, then what is the probability that a student will complete the entire exam (i.e., both sections) in less than an hour?
    Solution: Independence of events ``completing  A'' and ``completing  B'' imply that the joint density of A and B is
    p( x,y) = pA( x) pB( y)
    Since the distributions are identical, the probability is
    Pr
    ( x+y £ 60) =  1
    900
    ó
    õ
    ó
    õ


    R 
    e-x/30e-y/30dA
    where R is the region defined by x = 0, x = 60, y = 0, and y = 60-x. Thus,
    Pr
    ( x+y £ 60) =  1
    900
    ó
    õ
    60

    0 
    ó
    õ
    60-x

    0 
    e-x/30e-y/30dydx = 1-3e-2
    and since 1-3e-2 » 0.59399, there is about a 59.4% chance of completing the entire exam in less than an hour.
  8. Evaluate by converting to polar coordinates:
    ó
    õ
    1

    0 
    ó
    õ
    Ö
    2-x2


    x 
    dydx
    Solution: The region x = 0, x = 1, y = x, y = Ö{2-x2} is given in polar coordinates by
    R:
    q =  p
    4
    r = 0
    q =  p
    2
    r = Ö2
           
    so that changing to a double integral and using dA = rdrdq yields
    ó
    õ
    1

    0 
    ó
    õ
    Ö
    2-x2


    x 
    dydx = ó
    õ
    ó
    õ


    R 
    dA = ó
    õ
    p/2

    p/4 
    ó
    õ
    Ö2

    0 
    rdrdq =  p
    4
  9. Evaluate by converting to polar coordinates
    ó
    õ
    1

    0 
    ó
    õ
    Ö
    1-x2


    1-x 
     dydx
    ( x2+y2)3/2
    Solution: The curve y = 1-x is the same as x+y = 1, and thus has a pullback of
    rcos( q) +rsin( q) = 1,        r =  1
    cos( q) +sin( q)
    The curve y = Ö{1-x2} is the same as x2+y2 = 1, or r = 1 in polar. Thus, the region x = 0, x = 1, y = 1-x, y = Ö{1-x2} is given in polar coordinates by
    R:
    q = 0
    r =  1
    cos( q) +sin( q)
    q =  p
    2
    r = 1
           
    so that changing to a double integral and using dA = rdrdq yields
    ó
    õ
    1

    0 
    ó
    õ
    Ö
    1-x2


    1-x 
     dydx
    ( x2+y2)3/2
    =
    ó
    õ
    ó
    õ


    R 
     1
    ( x2+y2) 3/2
    dA
    =
    ó
    õ
    p/2

    0 
    ó
    õ
    1

    [ 1/(cos( q) +sin(q) )] 
     1
    ( r2) 3/2
      rdrdq
    =
    ó
    õ
    p/2

    0 
    ó
    õ
    1

    [ 1/(cos( q) +sin(q) )] 
     1
    r2
    drdq
    =
    ó
    õ
    p/2

    0 
     -1
    r
    ê
    ê
    1

    [ 1/(cos( q) +sin( q) )] 
    dq
    =
    ó
    õ
    p/2

    0 
    ( cos( q) +sin( q) -1) dq
    =
    2-  p
    2
  10. Use the coordinate transformation T( u,v) = á u,Öv ñ to evaluate
    ó
    õ
    Öp

    0 
    ó
    õ
    Öp

    0 
    ysin( y2) dydx
    Solution: If x = 0, then u = 0. If x = Öp, then u = Öp. If y = 0, then v = 0. If y = Öp, then v = p. Thus, the pullback of the region of integration into uv-coordinates is
    S:
    u = 0
      v = 0
    u = Öp
      v = p
    Since Tu = á 1,0 ñ and since Tv = á 0,[ 1/2]v-1/2 ñ , the Jacobian determinant is
     ( x,y)
    ( u,v)
    = ê
    ê
    ê
    ê
    ê
    1
    0
    0
     1
    2
    v-1/2
    ê
    ê
    ê
    ê
    ê
    =  1
    2
    v-1/2
    Thus, we have
    ó
    õ
    Öp

    0 
    ó
    õ
    Öp

    0 
    ysin( y2) dydx
    =
    ó
    õ
    ó
    õ


    R 
    ysin( y2) dA
    =
    ó
    õ
    Öp

    0 
    ó
    õ
    p

    0 
    v1/2sin( v)  1
    2
    v-1/2dvdu
    =
     1
    2
    ó
    õ
    Öp

    0 
    ó
    õ
    p

    0 
    sin( v)  dvdu
    =
    Öp
  11. Use the coordinate transformation T( u,v) = áu,ve-u ñ to evaluate
    ó
    õ
    1

    0 
    ó
    õ
    1

    0 
    yexdydx
    Solution: The pullback of x = 0 is u = 0. The pullback of x = 1 is u = 1. The pullback of y = 0 is ve-u = 0, or v = 0. The pullback of y = 1 is ve-u = 1, or v = eu. Thus, the pullback of the region of integration into uv-coordinates is
    S:
    u = 0
    v = 0
    u = 1
    v = eu
    Since Tu = á 1,-ve-u ñ and since Tv = á 0,e-u ñ , the Jacobian determinant is
     ( x,y)
    ( u,v)
     =   x
    u
     y
    v
     -   y
    v
     x
    u
     =  e-u
    Thus, dA = e-udvdu and we have
    ó
    õ
    1

    0 
    ó
    õ
    1

    0 
    yexdydx
    =
    ó
    õ
    ó
    õ


    R 
    yexdA
    =
    ó
    õ
    1

    0 
    ó
    õ
    eu

    0 
    ve-ueu  e-udvdu
    =
    ó
    õ
    1

    0 
    ó
    õ
    eu

    0 
    ve-udvdu
    =
     1
    2
    e-  1
    2
  12. Suppose r( x,y,z) = xz( 1-y) coulombs per cubic meter is the charge density of a ''charge cloud'' contained in the ''box'' given by [ 0,1] ×[ 0,1] ×[0,1] . What is the total charge inside the box?
    Solution: If W denotes the box [ 0,1] ×[ 0,1] ×[ 0,1] , then
    Q
    =
    ó
    õ
    ó
    õ
    ó
    õ


    W 
    xz( 1-y) dV
    =
    ó
    õ
    1

    0 
    ó
    õ
    1

    0 
    ó
    õ
    1

    0 
    xz( 1-y) dzdydx
    =
     1
    2
    ó
    õ
    1

    0 
    ó
    õ
    1

    0 
    ( x-xy) dydx
    =
     1
    8
      Coulombs
  13. Evaluate by converting to spherical coordinates
    ó
    õ
    1

    -1 
    ó
    õ
    Ö
    1-x2

    -Ö
    1-x2
    ó
    õ
    Ö
    2-x2-y2

    Ö
    x2+y2
     dzdydz
    z
    x2+y2+z2
    Solution: As a triple integral, we have
    ó
    õ
    ó
    õ
    ó
    õ


    S 
     dV
    z
    x2+y2+z2
    where S is the solid over the unit circle which is above the cone z = Ö{x2+y2} and below the sphere with radius Ö2.
    However, the cone in spherical coordinates is f = p/4, while the sphere is r = Ö2. Moreover, z = rcos( f) , x2+y2+z2 = r2, and dV = r2sin( f) dr df dq yields
    ó
    õ
    ó
    õ
    ó
    õ


    S 
     dV
    z
    x2+y2+z2
    =
    ó
    õ
    2p

    0 
    ó
    õ
    p/4

    0 
    ó
    õ
    Ö2

    0 
     r2sinfdrdfdq
    r2cos( f)
    =
    Ö2 ó
    õ
    2p

    0 
    ó
    õ
    p/4

    0 
     sin( f)
    cos( f)
    dfdq
    =
    pÖ2  ln( 2)
  14. What is the mass of the cone x2+y2 = z2 between z = 0 and z = 1 if the mass density is constant at m = 4 kg per cubic meter?
    Solution: In spherical coordinates, the cone x2+y2 = z2 corresponds to the constant angle f = p/4. However, the plane z = 1 corresponds to
    rcos( f) = 1,        or        r = sec(f)
    Thus, the mass of the cone is
    M = ó
    õ
    ó
    õ
    ó
    õ


    Cone 
      4  dV = ó
    õ
    2p

    0 
    ó
    õ
    p/4

    0 
    ó
    õ
    sec( f)

    0 
    4r2sin( f)drdfdq
    Evaluating and simplifying the inner integral yields
    M
    =
    ó
    õ
    2p

    0 
    ó
    õ
    p/4

    0 
     4r3
    3
    sin(f) ê
    ê
    sec( f)

    0 
      dfdq
    =
     4
    3
    ó
    õ
    2p

    0 
    ó
    õ
    p/4

    0 
    sec3( f)sin( f)   dfdq
    =
     4
    3
    ó
    õ
    2p

    0 
    ó
    õ
    p/4

    0 
    sec( f)    sec( f) tan( f)   dfdq
    since sin( f) sec( f) = tan( f) . Letting u = sec( f) , du = sec( f) tan( f) , u( 0) = 1, and u( p/4) = Ö2 yields
    M
    =
     4
    3
    ó
    õ
    2p

    0 
    ó
    õ
    Ö2

    1 
    ududq
    =
     4
    3
    ó
    õ
    2p

    0 
     1
    2
    dq
    =
     4p
    3