Triple Integrals in Spherical Coordinates

Suppose now that S is a solid bounded in spherical coordinates by q = a, q = b, f = p( q) , f = q( q) , r = f( f,q) , and r = g( f,q) , and recall that in spherical coordinates, the variables z and r are related to r and f by
r2+z2  =  r2
r  =  r sin(f)
z  =  r cos(f)
   
That is, r,f are the ''polar'' coordinates for the zr-plane.  Since in the xy-plane, the differential is dy dx = r dr dq, so also in the zr-plane, the differential is
dz dr = r dr df
Thus, r dz dr dq becomes rr  drdf dq, so that (1) becomes
ó
õ
ó
õ
ó
õ


S 
U( x,y,z) dV = ó
õ
b

a 
ó
õ
q( q)

p( q)  
ó
õ
g( f,q)

f( f,q)  
U( rcosq,rsin( q) ,rcos( f) )   rr  drdf dq
(2)
where r = rsin( f) . Although (2) is a quite useful tool for converting triple integrals into spherical coordinates, it is customary to use r = rsin( f) to eliminate r, thus producing the formula for change of variable into spherical coordinates
ó
õ
ó
õ
ó
õ


S 
U( x,y,z) dV = ó
õ
b

a 
ó
õ
q( q)

p( q)  
ó
õ
g( f,q)

f( f,q)  
U( r,f,q)   r2sin( f)   drdfdq
where U( r,f,q) = U( r sin(f) cos(q)r sin(f) sin(q),  rcos(f) ) .

In particular, remember that in spherical coordinates, the volume differential is given by either
dV = rr  dr df dq          or      dV = r2 sin(f)   dr df dq
Moreover, remember also the relationships given by the two right triangles relating ( x,y,z) to ( r,f,q) . (See the figure above).  In particular, x2+y2 = r2 implies x2+y2 = r2sin2( f) and r2+z2 = r2 implies that
x2+y2+z2 = r2
(3)
Also remember that q ranges over [ 0,p] , while f ranges over [ 0,p] .

       

EXAMPLE 2    Use spherical coordinates to evaluate the triple integral
ó
õ
1

-1 
ó
õ
Ö
1-x2
  
1-x2
ó
õ
Ö
1-x2-y2
  
1-x2-y2
x2+y2+z2
  dzdydx

Solution: To begin with, we notice that this iterated integral reduces to
ó
õ
ó
õ
ó
õ
 

unit  
sphere   

  
x2+y2+z2
  dV
As a result, in spherical coordinates it becomes
ó
õ
2p

0 
ó
õ
p

0 
ó
õ
1

0 
r2
  r2sin( f) dr df dq
since x2+y2+z2 = r2. Thus, we have
ó
õ
2p

0 
ó
õ
p

0 
ó
õ
1

0 
  rsin(f) dr df dq
=
ó
õ
2p

0 
ó
õ
p

0 
ó
õ
1

0 
  r3sin( f) dr df dq
=
ó
õ
2p

0 
ó
õ
p

0 
    r4
4
ê
ê
1

0 
sin( f)   dfdq
=
 1
4
ó
õ
2p

0 
ó
õ
p

0 
sin( f)  dfdq
=
 1
4
ó
õ
2p

0 
-cos( f ê
ê
p

0 
dq
=
p

       

EXAMPLE 3    Find the volume of the solid above the cone z2 = x2+y2 and below the plane z = 1.       

Solution: The cone z2 = x2+y2 corresponds to f = p/4 in spherical.
Moreover, z = 1 corresponds to rcos( f) = 1, or r = sec( f) . Thus,
V =
ó
õ
ó
õ
ó
õ


S 
dV
=
ó
õ
2p

0 
ó
õ
p/4

0 
ó
õ
sec( f)

0 
r2sin( f) drdfdq
=
ó
õ
2p

0 
ó
õ
p/4

0 
 r3
3
ê
ê
sec( f)

0 
sin( f) dfdq
=
 1
3
ó
õ
2p

0 
ó
õ
p/4

0 
sec3( f)sin( f) dfdq
However, sec( f) sin( f) = tan(f) , so that
V =  1
3
ó
õ
2p

0 
ó
õ
p/4

0 
tan( f) sec2( f) dfdq
Thus, u = tan( f) , du = sec2( f) df, u( 0) = tan( 0) = 0 and u( p/4) = tan( p/4) = 1 yields
V
=
 1
3
ó
õ
2p

0 
ó
õ
1

0 
ududq  
=
 1
3
ó
õ
2p

0 
 1
2
dq
=
 p
3

       

Check your Reading: Why does the cone z2 = x2+y2 correspond to f = p/4?