Part 2: Areas and Volumes in Polar Coordinates

If R is a region in the xy-plane bounded by q = a, q = b, r = g( q) , r = f( q) , then (1) implies that
Area  of  R dA =
ó
õ
b

a 
ó
õ
f( q)

g( q) 
rdrdq
thus allowing us to find areas in polar coordinates.       

EXAMPLE 2    Find the area of the region between x = 1, x = Ö2, y = 0, and
y =
2-x2
Solution: Since x = 1 corresponds to rcos( q) = 1 or r = sec( q) , the region is between the line r = sec( q) and a circle of radius Ö2 from q = 0 to q = p/4:

Thus, the area of the region is

Area dA =
ó
õ
p/4

0 
ó
õ
Ö2

sec( q)  
rdrdq
and evaluation of the iterated integral leads to
Area
=
ó
õ
p/4

0 
 r2
2
ê
ê
Ö2

sec( q)  
dq
=
 1
2
ó
õ
p/4

0 
( 2-sec2( q) ) dq
=
 1
2
( 2q-tan( q) ) ê
ê
p/4

0

=
 1
4
p-  1
2

       

Moreover, we can use polar coordinates to find areas of regions enclosed by graphs of polar functions.       

EXAMPLE 3    What is the area of the region enclosed by the cardioid r = 1+cos( q) , q in [ 0,2p] .

Solution: Since the cardioid contains the origin, the lower boundary is r = 0. Thus, its area is

Area =
ó
õ
2p

0 
ó
õ
1+cos( q)

0 
rdrdq =
ó
õ
2p

0 
 r2
2
ê
ê
1+cos( q)

0 
dq
Substituting and expanding leads to
Area
=
 1
2
ó
õ
2p

0 
[ 1+2cos( q)+cos2( q) ]   dq
=
 1
2
ó
õ
2p

0 
é
ë
1+2cos( q) +  1
2
+  1
2
cos( 2q) ù
û
dq
=
 1
2
æ
è
 3
2
q+2sin( q) +  1
4
sin( 2q) ö
ø
ê
ê
2p

0 
=
 3p
2

       
Polar coordinates can also be used to compute volumes. For example, the equation of a sphere of radius R centered at the origin is
x2+y2+z2 = R2
Solving for z then yields shows us that the sphere can be considered the solid between the graphs of the two functions
g( x,y) = -
R2-x2-y2
,        f( x,y) = 
R2-x2-y2
over the circle x2+y2 = R2 in the xy-plane.

Since circle x2+y2 = R2 defines the type I region

x = -R
   y =
R2-x2
x = R
   y =  
R2-x2
the volume of the sphere of radius R is given by the iterated integral
V =
ó
õ
R

-R 
ó
õ
Ö
R2-x2
    2
R2-x2-y2
  dydx
R2-x2
(2)

       

EXAMPLE 4    Use polar coordinates to evaluate
V =
ó
õ
R

-R 
ó
õ
Ö
R2-x2
    2
R2-x2-y2
  dydx
Solution: To begin with, we rewrite the iterated integral as a double integral over the interior of the circle of radius R centered at the origin, which is often denoted by D:
V =
óó
õõ


D 
    2
R2-x2-y2
    dA
In polar coordinates, the disc D of radius R is bounded by the curves q = 0, q = 2p, r = 0, r = R, so that
V
=
óó
õõ


D 
    2
R2-x2-y2
  dA
=
ó
õ
2p

0 
ó
õ
R

0 
2
R2-x2-y2
  rdrdq
Thus, if we let u = R2-r2, then du = -2rdr, u( 0) = R2, u( R) = 0, so that
V
=
-
ó
õ
2p

0 
ó
õ
0

R2 
u1/2  du  dq
=
-
ó
õ
2p

0 
 u3/2
3/2
ê
ê
0

R2 
dq
=
ó
õ
2p

0 
 2( R2) 3/2
3
 dq
=
 4p
3
R3

       

Check your Reading: What is the volume of the unit sphere?