Practice Test

Chapter 3

Name _____

Instructions. Show your work and/or explain your answers. (**Note:** Concepts from "DIFF GEOM" sections included only in the last problem).

1. Find the equation of the tangent plane to the level surface

$$x + z^2 = y + 1$$

at the point (2, 2, 1).

2. Find the level surface representation of the parametric surface

$$\mathbf{r}(u,v) = \langle v \sin(u), v^2, v \cos(u) \rangle$$

3. Find the level surface representation of the parametric surface

$$\mathbf{r}(u,v) = \langle e^{u} \cosh(v), e^{u} \sinh(v), e^{-u} \rangle$$

4. Find the parametric equation of the tangent plane to the parametric surface

$$\mathbf{r}(u,v) = \langle v \sin(u), v^2, v \cos(u) \rangle$$

at
$$(u, v) = (\frac{\pi}{4}, 1)$$
.

5. Find the image of the unit square under the coordinate transformation

$$T(u,v) = \langle u^2 - v^2, 2uv \rangle$$

- 6. Find the matrix of rotation through an angle of $\theta = 45^{\circ}$. Then use this to rotate the line v = u + 1 through an angle of 45° .
- 7. Convert the following into polar coordinates and solve for r:

$$y = 3x + 1$$

8. Convert the following into polar coordinates and solve for r:

$$x^2 + y^2 = x + y$$

- 9. Sketch the graph of $r=4\pi-\theta$ in polar coordinates when θ is in $[0,4\pi]$. Then find and sketch the tangent vector to the curve when $\theta=\pi$
- 10. Find the Jacobian determinant and area differential of the coordinate transformation

$$T(u,v) = \langle u - v, u^2 + v^2 \rangle$$

- 11. What is the unit surface normal for the surface $x^2 + y^2 + z^2 = 2x$? What is the unit surface normal for the surface in *cylindrical* coordinates?
- 12. Find the pullback of the surface $x^2 + y^2 + z^2 = 2x$ into spherical coordinates, and then use the result to construct a parameterization of the surface.
- 13. Use the fundamental form of the plane in polar coordinates to find the length of the polar curve $r = e^{-\theta/4}$, θ in $[0, 2\pi]$.

14. Find the fundamental form of the surface $\mathbf{r}(u, v) = \langle v \sin(u), v \cos(u), v \rangle$. Then use it to compute the arclength of

$$v = \sin\left(\frac{u}{\sqrt{2}}\right), u in \left[0, \frac{\pi}{4}\right]$$

- 15. DIFF GEOM: For the right circular cone, $\mathbf{r}(r,\theta) = \langle r\cos(\theta), r\sin(\theta), r \rangle$, do the following:
 - (a) Show that curves of the form $\theta = k$ for k constant are geodesics on the cone. What are these curves?
 - (b) Find the fundamental form of the cone and calculate the shortest distance between the points with coordinates $(r, \theta) = (1, \pi)$ and $(r, \theta) = (3, \pi)$.
 - (c) What are the principal curvatures of the surface?
 - (d) What are the mean and Gaussian curvatures of the surface? Do you obtain the same Gaussian curvature if you use the theorem Egregium?