Normal Curvature Normal Curvature       

In the first chapter, we developed a method for determining ' how much a curve is ``curving'' near a point. In this section, we extend the concept of curvature to a surface. In doing so, we will see that there are many ways to define curvature of a surface, but only one notion of curvature of a surface is intrinsic to the surface.

If r( t) is a geodesic of a surface, then r''  is normal to the surface, thus implying that r''  = kN where N = ± n. It follows that r'' · n = k  N · n = ±k, so that the curvature of the geodesic is given by k = ± r'' · n. As a result, we define the normal curvature kn in the direction of r by
kn = r'' · n
Notice that kn is positive if r'' and n point in the same direction, and is negative if r'' and n point in opposite directions.  The magnitude of kn is the curvature of the geodesic formed by the normal section through r'.

Let's derive a formula for kn when r( u,v) is an orthogonal parameterization of a surface and r( t) = r( u( t), v( t) ) is a geodesic on that surface. The chain rule implies that
r' ( t) = ru  du
dt
+rv  dv
dt
It follows that the second derivative is
r''   dru
dt
 du
dt
+ru  d2u
dt2
+  drv
dt
 dv
dt
+rv  d2v
dt2
so that the normal curvature is given by
kn = r'' · n =    dru
dt
·n  du
dt
+ru·n  d2u
dt2
+  drv
dt
·n  dv
dt
+rv·n  d2v
dt2
However, ru and rv are orthogonal to n, so that
kn
=
 dru
dt
·n  du
dt
+  drv
dt
·n  dv
dt
=
æ
è
ruu  du
dt
+ruv  dv
dt
ö
ø
·n  du
dt
+ æ
è
ruv  du
dt
+rvv  dv
dt
ö
ø
·n  du
dt
=
ruu·n æ
è
 du
dt
ö
ø
2

 
+2ruv·n  du
dt
 dv
dt
+rvv·n æ
è
 dv
dt
ö
ø
2

 

Finally, if we let du/dt = cos( q) || ru|| -1 and dv/dt = cos( q) || rv|| -1, then
r = cos( q)  ru
|| ru||
+sin( q)  rv
|| rv||
is a unit vector at an angle q to ru.
Substituting into kn then leads to
kn =  ruu·n
|| ru|| 2
cos2( q) +2  ruv·n
|| ru||   || rv||
cos( q) sin( q) +  rvv·n
|| rv|| 2
sin2( q)
Thus, the normal curvature kn( q) of the surface in the direction q measured from ru is
kn( q) =  ruu·n
|| ru|| 2
cos2( q) +  ruv·n
|| ru||   || rv||
sin( 2q) +  rvv·n
|| rv|| 2
sin2(q)
(1)
We let L, M, and N denote the coefficients of cos2( q) , sin( 2q) , and sin2( q) , respectively.      

EXAMPLE 1    Let r( u,v) = á cos( u) ,sin( u) ,v ñ be a parametrization of the cylinder. Find the normal curvature k( q) of the cylinder.       

Solution: The partial derivatives of r( u,v) are
ru
=
á -sin( u) ,cos( u),0 ñ ,        rv = á 0,0,1 ñ
ruu
=
á -cos( u) ,-sin( u),0 ñ ,    ruv = rvv = á0,0,0 ñ
Also, n = ru×rv = á cos(u) ,sin( u) ,0 ñ , so that ruu·n = -cos2( u) -sin2( u) = -1 while ruv·n = rvv·n = 0. Finally, since | | ru| | = || rv| | = 1, the normal curvature is
kn( q)
=
 ruu·n
|| ru|| 2
cos2( q) +  ruv·n
|| ru||   || rv||
sin( 2q) +  rvv·n
|| rv|| 2
sin2(q)
=
-cos2( q) +0+0
That is, if we slice the cylinder along the vector v( q) through a normal to the surface at a point P, then the curvature at P of the curve formed by the intersection is kn (q) = -cos2(q) .  To illustrate, consider that in the applet below each blue curve is a circle with radius 1/cos2(q).  
LiveGraphics3d Applet
The angle is θ = thet °.     The curvature is κ n(θ) = -ax^2

Check your Reading: Is the normal curvature of the cylinder ever positive?