The determinant of the Jacobian matrix of a transformation is
given by
|
|
EXAMPLE 3 Calculate the Jacobian Determinant of
Solution: If we identify x = u2-v and y = u2+v, then
T( u,v) = á u2-v,u2+v ñ
¶( x,y) ¶( u,v)
=
¶x ¶u
¶y ¶v
- ¶x ¶v
¶y ¶u
=
( 2u) ( 1) -( -1) ( 2u)
=
4u
Before we consider applications of the Jacobian determinant, let's
develop some of the its properties. To begin with, if x(u, v)
and y(u, v) are differentiable functions, then
|
|
|
Theorem 3.2: If f( u,v) , g( u,v) , and h( u,v) are differentiable functions and k is a number, then
¶( g,f) ¶( u,v)
= - ¶( f,g) ¶( u,v)
¶( f+g,h) ¶( u,v)
= ¶( f,h) ¶( u,v)
+ ¶(g,h) ¶( u,v)
¶( f,f) ¶( u,v)
= 0
¶( f-g,h) ¶( u,v)
= ¶( f,h) ¶( u,v)
+ ¶( g,h) ¶( u,v)
¶( kf,g) ¶( u,v)
= k ¶( f,g) ¶( u,v)
¶( fg,h) ¶( u,v)
= ¶( f,h) ¶( u,v)
g+f ¶(g,h) ¶( u,v)
These and additional properties will be explored in the exercises.
EXAMPLE 4 Verify the property
Solution: Direct calculation leads to
¶( fg,h) ¶( u,v)
= ¶( f,h) ¶( u,v)
g + f ¶( g,h) ¶( u,v)
¶( fg,h) ¶( u,v)
=
¶( fg) ¶u
¶h ¶v
- ¶( fg) ¶v
¶h ¶u
=
æ
è¶f ¶u
g+f ¶g ¶u
ö
ø¶h ¶v
- æ
è¶f ¶v
g+f ¶g ¶v
ö
ø¶h ¶u
=
æ
è¶f ¶u
¶h ¶v
- ¶f ¶v
¶h ¶u
ö
øg+f æ
è¶g ¶u
¶h ¶v
- ¶g ¶v
¶h ¶u
ö
ø
=
¶( f,h) ¶( u,v)
g+f ¶( g,h) ¶( u,v)
¶( k,f)
¶( u,v)
?