Coordinate Transformation

Coordinate Transformations

In this chapter, we explore mappings - where a mapping is a function that "maps" one set to another, usually in a way that preserves at least some of the underlyign geometry of the sets.

For example, a 2-dimensional coordinate transformation is a mapping of the form

$$
T(u, v)=\langle x(u, v), y(u, v)\rangle
$$

The functions $x(u, v)$ and $y(u, v)$ are called the components of the transformation. Moreover, the transformation T maps a set S in the $u v$-plane to a set $T(S)$ in the $x y$-plane:

If S is a region, then we use the components $x=f(u, v)$ and $y=g(u, v)$ to find the image of S under $T(u, v)$.

EXAMPLE 1 Find $T(S)$ when $T(u, v)=\left\langle u v, u^{2}-v^{2}\right\rangle$ and S is the unit square in the $u v$-plane (i.e., $S=[0,1] \times[0,1]$).

Solution: To do so, let's determine the boundary of $T(S)$ in the $x y$-plane. We use $x=u v$ and $y=u^{2}-v^{2}$ to find the image of the lines bounding the unit square:

$$
\begin{array}{llll}
\text { Side of Square } & & \text { Result of } T(u, v) & \\
{\cline { 1 - 2 }[0,1]} } & & x=0, y=u^{2}, u \text { in }[0,1] & \\
u=1, v \text { in }[0,1] & & x=v, y=1-v^{2}, v \text { in }[0,1] & \\
y=1-x^{2}, x \text {-plane } 0 \leq y \leq 1 \\
v=1, u \text { in }[0,1] & x=u, y=u^{2}-1, u \text { in }[0,1] & & y=x^{2}-1, x \text { in }[0,1] \\
u=0, u \text { in }[0,1] & x=0, y=-v^{2}, v \text { in }[0,1] & & y \text {-axis for }-1 \leq y \leq 0
\end{array}
$$

As a result, $T(S)$ is the region in the $x y$-plane bounded by $x=0$, $y=x^{2}-1$, and $y=1-x^{2}$.

Linear transformations are coordinate transformations of the form

$$
T(u, v)=\langle a u+b v, c u+d v\rangle
$$

where a, b, c, and d are constants. Linear transformations are so named because they map lines through the origin in the $u v$-plane to lines through the origin in the $x y$-plane.

If each point (u, v) in the $u v$-plane is associated with a column matrix, $[u, v]^{t}$, then the linear transformation $T(u, v)=\langle a u+b v, c u+d v\rangle$ can be written in matrix form as

$$
T\binom{u}{v}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

The matrix of coefficients a, b, c, d is called the matrix of the transformation.

EXAMPLE 2 Find the image of the unit square under the linear transformation

$$
T\binom{u}{v}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Solution: Since linear transformations map straight lines to straight lines, we need only find the images of the 4 vertices of the unit square. To begin with, the point $(0,0)$ is mapped to $(0,0)$. Associating the point $(1,0)$ to the column vector $[1,0]^{t}$ yields

$$
T\binom{1}{0}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Thus, the point $(1,0)$ is mapped to the point $(3,-2)$. Likewise, associating $(0,1)$ with $[0,1]^{t}$ leads to

$$
T\binom{0}{1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and associating $(1,1)$ with $[1,1]^{t}$ leads to

$$
T\binom{1}{1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

That is, $(0,1)$ is mapped to $(1,1)$ and $(1,1)$ is mapped to $(3,2)$. Thus, the unit square in the $u v$-plane is mapped to the parallelogram in the $x y$-plane with vertices $(0,0),(2,1),(1,1)$, and $(3,2)$.

Check your Reading: Is the entire u-axis mapped to 0 by $T(u, v)=\langle v \cos (u), v \sin (u)\rangle$?

Coordinate Systems

Coordinate transformations are often used to define often used to define new coordinate systems on the plane. The u-curves of the transformation are the images of vertical lines of the form $u=$ constant and the v-curves are images of horizontal lines of the form $v=$ constant.

Together, these curves are called the coordinate curves of the transformation.

EXAMPLE 3 Find the coordinate curves of

$$
T(u, v)=\left\langle u v, u-v^{2}\right\rangle
$$

Solution: The u-curves are of the form $u=k$ where k is constant. Thus,

$$
x=k v, \quad y=k-v^{2}
$$

so that $v=x / k$ and thus,

$$
y=\frac{-x}{k}+k^{2}
$$

which is a family of straight lines with slope $-1 / k$ and intercept k^{2}.
The v-curves are of the form $v=c$, where c is a constant. Thus, $x=u c$ and $y=u^{2}-c$. Since $u=x / c$, the v-curves are of the form

$$
y=\frac{x^{2}}{c^{2}}-c
$$

which is a family of parabolas opening upwards with vertices on the y-axis.

A coordinate transformation $T(u, v)$ is said to be 1-1 on a region S in the $u v$ plane if each point in $T(S)$ corresponds to only one point in S. The pair (u, v) in S is then defined to be the coordinates of the point $T(u, v)$ in $T(S)$.

For example, in the next section we will explore the polar coordinate transformation

$$
T(r, \theta)=\langle r \cos (\theta), r \sin (\theta)\rangle
$$

or equivalently, $x=r \cos (\theta)$ and $y=r \sin (\theta)$.

EXAMPLE 4 What are the coordinate curves of the polar coordinate transformation

$$
T(r, \theta)=\langle r \cos (\theta), r \sin (\theta)\rangle
$$

Solution: The r-curves are of the form $r=R$ for R constant. If $r=R$, then

$$
x=R \cos (\theta), \quad y=R \sin (\theta)
$$

As a result, $x^{2}+y^{2}=R^{2} \cos ^{2}(\theta)+R^{2} \sin ^{2}(\theta)=R^{2}$, which is the same as $x^{2}+y^{2}=R^{2}$. Thus, the r-curves are circles of radius R centered at the origin.

The θ-curves, in which $\theta=c$ for c constant, are given by

$$
x=r \cos (c), \quad y=r \sin (c)
$$

As a result, we have

$$
\frac{y}{x}=\frac{r \sin (c)}{r \cos (c)}=\tan (c)
$$

which is the same as $y=k x$ with $k=\tan (c)$. Thus, the θ-curves are lines through the origin of the $x y$-plane.

Since θ corresponds to angles, the polar coordinate transformation is not 1-1 in general. However, if we restrict θ to $[0,2 \pi)$ and require that $r>0$, then the polar coordinate transformation is 1-1 onto the $x y$-plane omitting the origin.

Check your Reading: What point corresponds to $r=0$ in example 4?

Rotations About the Origin

Rotations about the origin through an angle θ are linear transformations of the form

$$
\begin{equation*}
T(u, v)=\langle u \cos (\theta)-v \sin (\theta), u \sin (\theta)+v \cos (\theta)\rangle \tag{1}
\end{equation*}
$$

The matrix of the rotation through an angle θ is given by

$$
R(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

given that positive angles are those measured counterclockwise (see the exercises).

EXAMPLE 5 Rotate the triangle with vertices $(0,0),(2,0)$, and $(0,2)$ through an angle $\theta=\pi / 3$ about the origin.

Solution: To begin with, the matrix of the rotation is

$$
R(\theta)=\left[\begin{array}{cc}
\cos \left(\frac{\pi}{3}\right) & -\sin \left(\frac{\pi}{3}\right) \\
\sin \left(\frac{\pi}{3}\right) & \cos \left(\frac{\pi}{3}\right)
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]
$$

so that the resulting linear transformation is given by

$$
T\binom{u}{v}=\left[\begin{array}{cc}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

The point $(0,0)$ is mapped to $(0,0)$. The point $(2,0)$ is associated with $[2,0]^{t}$, so that

$$
T\binom{2}{0}=\left[\begin{array}{cc}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
\sqrt{3}
\end{array}\right]
$$

That is, $(2,0)$ is mapped to $(1, \sqrt{3})$. Similarly, it can be shown that $(0,2)$ is mapped to $(-\sqrt{3}, 1)$:

Often rotations are used to put figures into standard form, and often this requires rotating a line $y=m x$ onto the x-axis.

If we notice that $m=\tan (\theta)$, then it follows that

$$
\begin{aligned}
& \cos (\theta)=\frac{1}{\sqrt{m^{2}+1}} \\
& \sin (\theta)=\frac{m}{2+1}
\end{aligned}
$$

Thus, the rotation matrix for rotating the x-axis to the line $y=m x$ is

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \tag{2}\\
\sin (\theta) & \cos (\theta)
\end{array}\right]=\frac{1}{\sqrt{m^{2}+1}}\left[\begin{array}{cc}
1 & -m \\
m & 1
\end{array}\right]
$$

Conversely, rotation through an angle $-\theta$ will rotate $y=m x$ to the x-axis (and corresponds to using $-m$ in place of m in (2)).
blueEXAMPLE 6 blackRotate the triangle with vertices at $(0,0)$, $(1,2)$, and $(-4,2)$ so that one edge lies along the x-axis.

Solution: The line through $(0,0)$ and $(1,2)$ is $y=2 x$, which implies that the rotation matrix is

$$
\left[\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]=\frac{1}{\sqrt{2^{2}+1}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

Thus, the point $(1,2)$ is mapped to

$$
T\binom{1}{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
\sqrt{5} \\
0
\end{array}\right]
$$

while the point $(-1,4)$ is mapped to

$$
T\binom{-4}{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
-4 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \sqrt{5}
\end{array}\right]
$$

Notice that this reveals that that the triangle is a right triangle.

Check your Reading: Why do all linear transformations map $(0,0)$ to $(0,0)$?

Rotation of Conics into Standard Form

If A, B, and C are constants, then the level curves of

$$
\begin{equation*}
Q(x, y)=A x^{2}+B x y+C y^{2} \tag{3}
\end{equation*}
$$

are either lines, circles, ellipses, or hyperbolas. If $B \neq 0$, then a curve (??) is the image under rotation of a conic in standard position in the $u v$-plane.

Specifically, (??) is the image of a conic in standard position in the $u v$-plane of a rotation

$$
\left[\begin{array}{l}
x \tag{4}\\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

that maps the u-axis to a principal axis of the conic, which is a line $y=m x$ containing the points closest to or furthest from the origin.

Thus, Lagrange multipliers can be used to determine the equation $y=m x$ of a principal axis, after which replacing x and y by the rotation transformation implied by (2) and (4) will rotate a conic (??) into standard form.
blueEXAMPLE 7 blackRotate the following conic into standard form:

$$
\begin{equation*}
5 x^{2}-6 x y+5 y^{2}=8 \tag{5}
\end{equation*}
$$

Solution: Our goal is to find the extrema of the square of the distance from a point (x, y) to the origin, which is $f(x, y)=x^{2}+y^{2}$, subject to the constraint (5) The associated Lagrangian is

$$
L(x, y, \lambda)=x^{2}+y^{2}-\lambda\left(5 x^{2}-3 x y+5 y^{2}-21\right)
$$

Since $L_{x}=2 x-\lambda(10 x-3 y)$ and $L_{y}=2 y-\lambda(-3 x+10 y)$, we must solve the equations

$$
2 x=\lambda(10 x-6 y), \quad 2 y=\lambda(-6 x+10 y)
$$

Since λ cannot be zero since $(0,0)$ cannot be a critical point, we eliminate λ using the ratio of the two equations:

$$
\frac{2 x}{2 y}=\frac{\lambda(10 x-6 y)}{\lambda(-6 x+10 y)} \quad \text { or } \quad \frac{x}{y}=\frac{10 x-6 y}{-6 x+10 y}
$$

Cross-multiplication yields $10 x y-6 x^{2}=10 x y-6 y^{2}$ so that $y^{2}=x^{2}$. Thus, the principal axes - i.e., the lines containing the extrema are $y=x$ and $y=-x$.
Using $y=x$ means $m=1$ and correspondingly,

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

That is, $x=(u-v) / \sqrt{2}$ and $y=(u+v) / \sqrt{2}$, which upon substitution into (5) yields

$$
\begin{aligned}
5\left(\frac{u-v}{\sqrt{2}}\right)^{2}-6\left(\frac{u-v}{\sqrt{2}}\right)\left(\frac{u+v}{\sqrt{2}}\right)+5\left(\frac{u+v}{\sqrt{2}}\right)^{2} & =8 \\
\frac{5\left(u^{2}-2 u v+v^{2}\right)}{2}-\frac{6\left(u^{2}-v^{2}\right)}{2}+\frac{5\left(u^{2}+2 u v+v^{2}\right)}{2} & =8 \\
5 u^{2}+5 v^{2}-6 u^{2}+6 v^{2}+5 u^{2}+5 v^{2} & =16 \\
4 u^{2}+16 v^{2} & =16
\end{aligned}
$$

Consequently, the ellipse (5) is a rotation of the ellipse

$$
\frac{u^{2}}{4}+\frac{v^{2}}{1}=16
$$

as is shown below:

Exercises:

Find the image in the $x y$-plane of the given curve in the uv-plane under the given transformation. If the transformation is linear, identify it as such and write it in matrix form.

1. $T(u, v)=\left\langle u, v^{2}\right\rangle, v=2 u$
2. $\quad T(u, v)=\langle u v, u+v\rangle, v=3$
3. $T(u, v)=\langle u-2 v, 2 u+v\rangle, v=0$
4. $T(u, v)=\langle u+3, v+2\rangle, u^{2}+v^{2}=1$
5. $T(u, v)=\langle 4 u, 3 v\rangle, u^{2}+v^{2}=1$
6. $\quad T(u, v)=\left\langle u^{2}+v, u^{2}-v\right\rangle, v=u$
7. $T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle, v=1-u$
8. $T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle, v=u$
9. $T(r, \theta)=\langle r \cos (\theta), r \sin (\theta)\rangle, r=1$
10. $T(r, \theta)=\langle r \cos (\theta), r \sin (\theta)\rangle, \theta=\pi / 4$

Find several coordinate curves of the given transformation (e.g., $u=-1,0,1,2$ and $v=-1,0,1,2)$. What is the image of the unit square under the given transformation? If the transformation is linear, identify it as such and write it in matrix form.
11. $T(u, v)=\langle u+1, v+5\rangle$
13. $T(u, v)=\langle-v, u\rangle$
15. $T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle$
17. $T(u, v)=\langle 2 u+3 v,-3 u+2 v\rangle$
19. Rotation about the origin
through an angle $\theta=\frac{\pi}{4}$
21. $T(u, v)=\langle \rangle$
23. $T(r, \theta)=\left\langle e^{r} \cos (\theta), e^{r} \sin (\theta)\right\rangle$
12. $T(u, v)=\langle 2 u+1,3 v-2\rangle$
14. $T(u, v)=\langle u+v+1, v+2\rangle$
16. $T(u, v)=\left\langle u^{2}+v, u^{2}-v\right\rangle$
18. $T(u, v)=\left\langle\frac{u+v}{2}, \frac{u-v}{2}\right\rangle$
20. Rotation about the origin through an angle $\theta=\frac{2 \pi}{3}$
22. $T(u, v)=\langle u \cos (\pi v), u \sin (\pi v)\rangle$
24. $\quad T(r, t)=\langle r \cosh (t), r \sinh (t)\rangle$

Find a conic in standard form that is the pullback under rotation of the given curve.
25. $\quad 5 x^{2}+6 x y+5 y^{2}=8$
26. $\quad 5 x^{2}-6 x y+5 y^{2}=9$
27. $x y=1$
28. $x y=4$
29. $7 x^{2}+6 \sqrt{3} x y+13 y^{2}=16$
30. $13 x^{2}-6 \sqrt{3} x y+7 y^{2}=16$
31. $52 x^{2}-72 x y+73 y^{2}=100$
31. $73 x^{2}+72 x y+52 y^{2}=100$
33. The conic section

$$
x^{2}+2 x y+y^{2}-x+y=2
$$

is not centered at the origin. Can you rotate it into standard position?
34. The conic section

$$
5 x^{2}+6 x y+5 y^{2}-4 x+4 y=-2
$$

is not centered at the origin. Can you rotate it into standard position?
35. Show that if

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

then we must also have

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What is the significance of this result?
36. Use matrix multiplication to show that a rotation through angle θ followed by a rotation through angle ϕ is the same as a single rotation through angle $\theta+\phi$.
37. The parabolic coordinate system on the $x y$-plane is the image of the coordinate transformation

$$
T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle
$$

Determine the coordinate curves of the transformation, and sketch a few for specific values of u and v.
38. The tangent coordinate system on the $x y$-plane is the image of the coordinate transformation

$$
T(u, v)=\left\langle\frac{u}{u^{2}+v^{2}}, \frac{v}{u^{2}+v^{2}}\right\rangle
$$

Determine the coordinate curves of the transformation, and sketch a few for specific values of u and v.
39. The elliptic coordinate system on the $x y$-plane is the image of the coordinate transformation

$$
T(u, v)=\langle\cosh (u) \cos (v), \sinh (u) \sin (v)\rangle
$$

Determine the coordinate curves of the transformation, and sketch a few for specific values of u and v.
40. The bipolar coordinate system on the $x y$-plane is the image of the coordinate transformation

$$
T(u, v)=\left\langle\frac{\sinh (v)}{\cosh (v)-\cos (u)}, \frac{\sin (u)}{\cosh (v)-\cos (u)}\right\rangle
$$

Determine the coordinate curves of the transformation, and sketch a few for specific values of u and v.
41. Write to Learn: A coordinate transformation $T(u, v)=\langle f(u, v), g(u)$, is said to be area preserving if the area of the image of any region S in the $u v$ plane is the same as the area of R. Write a short essay explaining why a rotation through an angle θ is area preserving.
42. Write to Learn (Maple): A coordinate transformation $T(u, v)=$ $\langle f(u, v), g(u)$,$\rangle is said to be conformal (or angle-preserving) if the angle be-$ tween 2 lines in the $u v$-plane is mapped to the same angle between the image lines in the $x y$-plane. Write a short essay explaining why a linear transformation with a matrix of

$$
A=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

is a conformal transformation.
43. Write to Learn: What type of coordinate system is implied by the coordinate transformation

$$
T(u, v)=\langle u, F(u)+v\rangle ?
$$

What are the coordinate curves? What is significant about tangent lines to these curves? Write a short essay which addresses these questions.
44. Write to Learn: Suppose that we are working in an $X Y$-coordinate system that is centered at (p, q) and is at an angle θ to the x-axis in an $x y$ coordinate system.

Write a short essay explaining how one would convert coordinates with respect to the $X Y$ axes to coordinates in the $x y$-coordinate system.

