
Partial Di¤erential Equations

Partial Di¤erential Equations

Much of modern science, engineering, and mathematics is based on the study of
partial di¤erential equations, where a partial di¤erential equation is an equation
involving partial derivatives which implicitly de�nes a function of 2 or more
variables.
For example, if u (x; t) is the temperature of a metal bar at a distance x from

the initial end of the bar,

then under suitable conditions u (x; t) is a solution to the heat equation

@u

@t
= k

@2u

@x2

where k is a constant. As another example, consider that if u (x; t) is the
displacement of a string a time t; then the vibration of the string is likely to
satisfy the one dimensional wave equation for a constant, which is

@2u

@t2
= a2

@2u

@x2
(1)

When a partial di¤erential equation occurs in an application, our goal is
usually that of solving the equation, where a given function is a solution of a
partial di¤erential equation if it is implicitly de�ned by that equation. That is,
a solution is a function that satis�es the equation.

EXAMPLE 1 Show that if a is a constant, then u (x; y) = sin (at) cos (x)
is a solution to

@2u

@t2
= a2

@2u

@x2
(2)

Solution: Since a is constant, the partials with respect to t are

@u

@t
= a cos (at) cos (x) ;

@2u

@t2
= �a2 sin (at) sin (x) (3)

Moreover, ux = � sin (at) sin (x) and uxx = � sin (at) cos (x) ; so
that

a2
@2u

@x2
= �a2 sin (at) cos (x) (4)
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Since (3) and (4) are the same, u (x; t) = sin (at) cos (x) is a solution
to (2).

EXAMPLE 2 Show that u (x; t) = ey sin (x) is a solution to Laplace�s
Equation,

@2u

@x2
+
@2u

@y2
= 0

Solution: To begin with, ux = ey cos (x) and uxx = �ey sin (x) :
Moreover, uy = ey sin (x) and uyy = ey sin (x) ; so that

@2u

@x2
+
@2u

@y2
= �ey sin (x) + ey sin (x) = 0

Check your Reading: Why are u; uy, and uyy the same as u in example 2?

Separation of Variables

Solutions to many (but not all!) partial di¤erential equations can be obtained
using the technique known as separation of variables. It is based on the fact
that if f (x) and g (t) are functions of independent variables x; t respectively
and if

f (x) = g (t)

then there must be a constant � for which f (x) = � and g (t) = �: ( The proof
is straightforward, in that

@

@x
f (x) =

@

@x
g (t) = 0 =) f 0 (x) = 0 =) f (x) constant

@

@t
g (t) =

@

@t
f (x) = 0 =) g0 (t) = 0 =) g (x) constant)

In separation of variables, we �rst assume that the solution is of the separated
form

u (x; t) = X (x)T (t)

We then substitute the separated form into the equation, and if possible, move
the x-terms to one side and the t-terms to the other. If not possible, then this
method will not work; and correspondingly, we say that the partial di¤erential
equation is not separable.
Once separated, the two sides of the equation must be constant, thus re-

quiring the solutions to ordinary di¤erential equations. A table of solutions to
common di¤erential equations is given below:

Equation General Solution
y00 + !2y = 0 y (x) = A cos (!x) +B sin (!x)
y0 = ky y (t) = Pekt

y00 � !2y = 0 y (x) = A cosh (!x) +B sinh (!x)
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The product ofX (x) and T (t) is the separated solution of the partial di¤erential
equation.

EXAMPLE 3 For k constant, �nd the separated solution to the
Heat Equation

@u

@t
= k

@2u

@x2

Solution: To do so, we substitute u (x; t) = X (x)T (t) into the
equation to obtain

@

@t
(X (x)T (t)) = k

@2

@x2
(X (x)T (t))

Since X (x) does not depend on t; and since T (t) does not depend
on x; we obtain

X (x)
@

@t
T (t) = kT (t)

@2

@x2
X (x)

which after evaluating the derivatives simpli�es to

X (x)T 0 (t) = kT (t)X 00 (x)

To separate the variables, we divide throughout by kX (x)T (t):

X (x)T 0 (t)

kX (x)T (t)
=
kT (t)X 00 (x)

kX (x)T (t)

This in turn simpli�es to

T 0 (t)

kT (t)
=
X 00 (x)

X (x)

Thus, there is a constant � such that

T 0

kT
= � and

X 00

X
= �

These in turn reduce to the di¤erential equations

T 0 = �kT and X 00 = �X

The solution to the �rst is an exponential function of the form

T (t) = Pe�kt

If � > 0; however, then temperature would grow to 1; which is not
physically possible. Thus, we assume that � is negative, which is to
say that � = �!2 for some number !: As a result, we have

X 00 = �!2X or X 00 + !2X = 0
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The equation X 00 + !2X = 0 is a harmonic oscillator, which has a
solution

X (x) = A cos (!x) +B sin (!x)

Consequently, the separated solution for the heat equation is

u (x; t) = X (x)T (t) = Pe�!
2kt (A cos (!x) +B sin (!x))

It is important to note that in general a separated solution to a partial
di¤erential equation is not the only solution or form of a solution. Indeed,
in the exercises, we will show that

u (x; t) =
1p
kt
e�x

2=(4kt)

is also a solution to the heat equation in example 3.
As a simpler example, consider that F (x; y) = y � x2 is a solution to the

partial di¤erential equation
Fx + 2xFy = 0

This is because substituting Fx = �2x and Fy = 1 into the equation yields

Fx + 2xFy = �2x+ 2x � 1 = 0

Now let�s obtain a di¤erent solution by assuming a separated solution of the
form F (x; y) = X (x)Y (y) :

EXAMPLE 4 Find the separated solution to Fx + 2xFy = 0:

Solution: The separated form F (x; y) = X (x)Y (y) results in

@

@x
(X (x)Y (y)) + 2x

@

@y
(X (x)Y (y)) = 0

which in turn leads to

X 0 (x)Y (y) = �2xX (x)Y 0 (y)

Dividing both sides by X (x)Y (y) leads to

X 0 (x)

�2xX (x) =
Y 0 (y)

Y (y)

However, a function of x can be equal to a function of y for all x
and y only if both functions are constant. Thus, there is a constant
� such that

X 0 (x)

�2xX (x) = � and
Y 0 (y)

Y (y)
= �
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It follows that Y 0 (y) = �Y (y) ; which implies that Y (y) = C1e
�y:

However, X 0 (x) = �xX (x), so that separation of variables yields

dX

dx
= �2�xX =) dX

X
= �xdx

Thus,
R
dX=X = �

R
xdx; which yields

ln jXj = ��x2 + C2
jXj = e��x

2+C2

X (x) = �eC2e��x
2

Thus, if we let C3 = �eC2 ; then Y (y) = C3 exp
�
x2=2

�
and the

separated solution is

F (x; y) = Ce��x
2

e�y = Ce�(y�x
2)

where C = C1C3 is an arbitrary constant.

Notice that there are similarities between the separated solution

F (x; y) = Ce�(y�x
2)

and the other solution we stated earlier, F (x; y) = y � x2: However, the two
solutions are clearly not the same.

Check your Reading: Why is this method called separation of variables?

Boundary Conditions

Partial di¤erential equations often occur with boundary conditions, which are
constraints on the solution at di¤erent points in space. To illustrate how bound-
ary conditions arise in applications, let us suppose that u (x; t) is the displace-
ment at x in [0; l] of a string of length l at time t:
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Tension on a short section of the string over the interval [x; x+�x] is along the
tangents to the endpoints,

x x+∆x

y = u(x,t)

x x+∆x

(x+∆x) = ux(x+∆x,t)dy
dx(x) = ux(x,t)dy

dx

Thus, the net tension responsible for pulling the string toward the x-axis is
proportional to the di¤erence in the slopes,

Net Tension = k ( ux (x+�x; t)� ux (x; t) )

where k is the tension constant (see http://en.wikipedia.org/wiki/Vibrating_string#Derivation
for details). Consequently, if � is the mass-density of the string (mass per unit
length), then mass times acceleration equal to the force of tension yields

��x
@2u

@t2
= k ( ux (x+�x; t)� ux (x; t) )

for arbitrarily small �x: Solving for utt and letting �x approach 0 yields

@2u

@t2
=
k

�
lim
�x!0

ux (x+�x; t)� ux (x; t)
�x

=
k

�

@2u

@x2

so that if we let a2 = k=�; then the partial di¤erential equation describing the
motion of the string is

@2u

@t2
= a2

@2u

@x2
(5)

which is the one-dimensional wave equation.
Moreover, since the string is �xed at x = 0 and x = l; we also have the

boundary conditions

u (0; t) = 0 and u (l; t) = 0 (6)

for all times t: If we avoid the trivial solution (that of no vibration, u = 0);
then these boundary conditions can be used to determine some of the arbitrary
constants in the separated solution.

EXAMPLE 5 Find the solution of the one dimensional wave equa-
tion (5) subject to the boundary conditions (6).
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Solution: To do so, we substitute u (x; t) = X (x)T (t) into the
equation to obtain

@2

@t2
(X (x)T (t)) = a2

@2

@x2
(X (x)T (t)) =) X (x)T 00 (t) = a2T (t)X 00 (x)

To separate the variables, we then divide throughout by a2X (x)T (t):

X (x)T 00 (t)

a2X (x)T (t)
=
a2T (t)X 00 (x)

a2X (x)T (t)

This in turn simpli�es to

T 00 (t)

a2T (t)
=
X 00 (x)

X (x)

As a result, there must be a constant � such that

T 00

a2T
= � and

X 00

X
= �

These in turn reduce to the di¤erential equations

T 00 = �a2T and X 00 = �X

If � > 0; however, the oscillations would become arbitrarily large in
amplitude, which is not physically possible. Thus, we assume that
� is negative, which is to say that � = �!2 for some number !: As
a result, we have

T 00 = �a2!2T and X 00 = �!2X

Both equations are harmonic oscillators, so that the general solutions
are

T (t) = A1 cos (a!t)+B1 sin (a!t) and X (x) = A2 cos (!x)+B2 sin (!x)

where A1; B1; A2; and B2 are arbitrary constants.

Let�s now concentrate on X (x) : The boundary conditions (6)
imply that

u (0; t) = X (0)T (t) = 0 and u (l; t) = X (l)T (t) = 0

If we let T (t) = 0; then we will obtain the solution u (x; t) = 0
for all t: This is called the trivial solution since it is the solution
corresponding to the string not moving at all. To avoid the trivial
solution, we thus assume that

X (0) = 0 and X (l) = 0
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However, X (x) = A2 cos (!x) + B2 sin (!x) ; so that X (0) = 0 im-
plies that

0 = A2 cos (0) +B2 sin (0) = A2

Thus, A2 = 0 and X (x) = B2 sin (!x) : The boundary condition
X (l) = 0 then implies that

B2 sin (!l) = 0

If we let B2 = 0; then we again obtain the trivial solution. To avoid
the trivial solution, we let sin (!l) = 0; which in turn implies that

!l = n�

for any integer n: Thus, there is a solution for !n = n�=l for each
value of n; which means that

Xn (x) = B2 sin
�n�
l
x
�

is a solution to the vibrating string equation for each n: Conse-
quently, for each integer n there is a separated solution of the form

un (x; t) =
h
A1 cos

�an�
l
t
�
+B1 sin

�an�
l
t
�i
B2 sin

�n�
l
x
�

(7)

Check your Reading: Where did the an�=l come from in the �nal form of
the separated solution?

Linearity and Fourier Series

We say that a partial di¤erential equation is linear if the linear combination
of any two solutions is also a solution. For example, suppose that p (x; t) and
q (x; t) are both solutions to the heat equation� i.e., suppose that

@p

@t
= k

@2p

@x2
and

@q

@t
= k

@2q

@x2
(8)

A linear combination of p and q is of the form u (x; t) = Ap (x; t) + Bq (x; t)
where A;B are both constants. Moreover,

@u

@t
=

@

@t
(Ap (x; t) +Bq (x; t)) = A

@p

@t
+B

@q

@t

so that (8) implies that

@u

@t
= A

@p

@t
+B

@q

@t
= Ak

@2p

@x2
+Bk

@2q

@x2
= k

@2

@x2
(Ap (x; t) +Bq (x; t))
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That is, the linear combination u (x; t) = Ap (x; t) + Bq (x; t) is also a solution
to the heat equation, and consequently, we say that the heat equation is a linear
partial di¤erential equation.
Suppose now that a linear partial di¤erential equation has both boundary

conditions and initial conditions, where initial conditions are constraints on the
solution and its derivatives at a �xed point in time. Then a complete solution
to the partial di¤erential equation can often be obtained from the Fourier series
decompositions of the initial conditions.
For example, let us suppose that the vibrating string in example 5 is plucked

at time t = 0, which is to say that it is released from rest at time t = 0 with an
initial shape given by the graph of the function y = f (x):

Then the initial conditions for the vibrating string are

u (x; 0) = f (x) and
@u

@t
(x; 0) = 0

Let�s apply the initial conditions to the separated solution (7). The initial
condition ut (x; 0) = 0 implies that X (x)T 0 (0) = 0; so that to avoid the trivial
solution we suppose that T 0 (0) = 0. Thus,

0 = T 0 (0) = �a!A1 sin (0) +B1a! cos (0) = B1

As a result, we must have T (t) = A1 cos (an�t=l) ; and if we de�ne bn = A1B2;
then (7) reduces to

un (x; t) = bn cos
�an�

l
t
�
sin
�n�
l
x
�

(9)

As will be shown in the exercises, the 1 dimensional wave equation is linear.
Thus, if uj (x; t) and uk (x; t) are solutions (9) for integers j and k, then uj (x; t)+
uk (x; t) is also a solution. In fact, the sum all possible solutions, which is the
sum of all solutions for any positive integer value of n; is a solution called the
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general solution. That is, the general solution to the 1 dimensional wave
equation with the given boundary and initial conditions is

u (x; t) =
1X
n=1

bn cos
�an�

l
t
�
sin
�n�
l
x
�

(10)

Hence, the only task left is that of determining the values of the constants
bn: However, (10) implies that

u (x; 0) =
1X
n=1

bn cos (0) sin
�n�
l
x
�

and since u (x; 0) = f (x) ; this reduces to

f (x) =
1X
n=1

bn sin
�n�
l
x
�

As a result, if f (x) is continuous and if f (0) = f (l) ; then the constants bn are
the Fourier Sine coe¢ cients of f (x) on [0; l] ; which are given by

bn =
2

l

Z l

0

f (x) sin
�n�
l
x
�
dx (11)

For more on Fourier series and their relationship to partial di¤erential equations,
see the Maple worksheet associated with this section.

EXAMPLE 6 What is the solution to the vibrating string problem
for a 2 foot long string which is initially at rest and which has an
initial shape that is the same as the graph of the function

u (x; 0) =
1

12
� jx� 1j

12

Solution: We begin by �nding the Fourier coe¢ cients bn; which
according to (11) are for an l = 2 foot long string given by

bn =
2

2

Z 2

0

�
1

12
� jx� 1j

12

�
sin
�n�
2
x
�
dx

:Evaluating using the computer algebra system Maple then yields

bn =
2 sin

�
n�
2

�
� sin (n�)

3n2�2
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However, since n is an integer, sin (n�) = 0 for all n. Thus, bn
reduces to

bn =
2 sin

�
n�
2

�
3n2�2

But sin
�
n�
2

�
= 0 when n is even, so that b0 = b2 = : : : = b2n = 0:

Thus, we only have odd coe¢ cients of the form

b1 =
2 sin

�
�
2

�
3 � 12 � �2 ; b3 =

2 sin
�
3�
2

�
3 � 32 � �2 ; b5 =

2 sin
�
5�
2

�
3 � 52 � �2 ; : : :

which simplify to

b1 =
2 (1)

3 � 12 � �2 ; b3 =
2 (�1)
3 � 32 � �2 ; b5 =

2 (1)

3 � 52 � �2 ; : : :

Odd numbers are of the form 2n+1 for n = 0; 1; : : : : Thus, we have

b2n+1 =
2 (�1)n

3�2 (2n+ 1)
2

and the solution (10) is of the form

u (x; t) =

1X
n=0

2 (�1)n

3�2 (2n+ 1)
2 cos

�
a (2n+ 1)�

l
t

�
sin

�
(2n+ 1)�

l
x

�

The Fourier series (10) is known as the Harmonic Series in music theory. Indeed,
if we write the Fourier series in expanded form

u (x; t) = b1 cos
�a�
l
t
�
sin
��
l
x
�
+b2 cos

�
2a�

l
t

�
sin

�
2�

l
x

�
+b3 cos

�
3a�

l
t

�
sin

�
3�

l
x

�
+: : :

then the �rst term is known as the fundamental, which corresponds to the string
shape of y = sin (�x=l) ; which is �xed at x = 0 and x = l, oscillating at an
amplitude of b1: The oscillations themselves have a frequency of

f1 =
a�

l

rad

sec
� 1cycle
2� rad

=
a

2l

cycles

sec

A "cycle per second" is known as a Hertz and recall that a = k=�; so that

f1 =
k

2�l
Hz

Thus, increases in tension k cause the fundamental pitch to rise, while length-
ening the string lowers the pitch. A heavier string (larger � ) has a lower pitch
than a lighter string.
The second term in the Harmonic Series of the string oscillates at an ampli-

tude b2 with twice the frequency of the fundamental,

f2 =
2a�

l
= 2f1:
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It is known as the �rst harmonic or �rst overtone of the string, and it corre-
sponds to the oscillation of a string shape y = sin (2�x=l) that is �xed at x = 0,
x = l=2, and x = l �i.e., half as long as the fundamental. Similarly, the third
term is the second harmonic, which oscillates at a frequency of f3 = 3f1 and
which corresponds to oscillations at amplitude b3 of sinusoidal shapes a third as
long as the fundamental.

For example, if the string is at a length, tension, and mass so as to oscillate
with a frequency of 440 hz ("A" above middle "C"), then we also hear a pitch
of f2 = 880 hz (an octave above the fundamental), a pitch of f3 = 3 (440) hz
(an octave and a �fth above the fundamental) and so on.

Exercises
Show that the given function is a solution to the given partial di¤erential equa-
tion. Assume that k; !; a; and c are constants.

1. u (x; y) = x3 � 3xy2 is a solution to @2u
@x2 +

@2u
@y2 = 0

2. u (x; y) = 3x2y � y3 is a solution to @2u
@x2 +

@2u
@y2 = 0

3. u (x; t) = 2t+ x2 is a solution to @u
@t =

@2u
@x2

4. u (x; t) = x2 + t2 is a solution to @2u
@t2 =

@2u
@x2

5. u (x; y) = ex sin (y) is a solution to @2u
@x2 +

@2u
@y2 = 0

6. u (x; y) = tan�1
�
y
x

�
is a solution to @2u

@x2 +
@2u
@y2 = 0

7. u (x; t) = e�!
2kt cos (!x) is a solution to @u

@t = k @
2u
@x2

8. u (x; t) = sin (!x) sin (a!t) is a solution to @2u
@t2 = a2 @

2u
@x2

9. u (x; t) = f (x+ ct) is a solution to @2u
@t2 = c2 @

2u
@x2

10. u (x; t) = f (x� ct) is a solution to @2u
@t2 = c2 @

2u
@x2

Find the separated solution to each of the following partial di¤erential equations.
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Assume that k; a; c; and � are constant.

11. @u
@t =

@u
@x 12. @u

@t = �k
@u
@x

13. @u
@x +

@u
@y = 0 14. @u

@x = �2x
@u
@y

15. Fx + e
�xFy = 0 16. Fx + 3x

2Fy = 0
17. ux + ut = u 18. @u

@x
@u
@y = u

19. @2u
@x2 +

@2u
@y2 = 0 20. ut = uxx + u

21. @2V
@x2 � �

@V
@t � V = 0 22. ut = uxx � u

23. @2u
@t2 �

@u
@x

@u
@t = 0 24. @2u

@t2 +
@u
@x

@u
@t = 0

25. Show that
u (x; t) =

1p
t
e�x

2=(4t)

is a solution to the heat equation ut = uxx:

26. Show that u (x; y; z) =
�
x2 + y2 + z2

�1=2
is a solution to the 3 dimensional

Laplace equation
@2u

@x2
+
@2u

@y2
+
@2u

@z2
= 0

27. Let i2 = �1 and suppose that u (x; y) and v (x; y) are such that

(x+ iy)
2
= u (x; y) + i v (x; y)

Find u and v and show that both satisfy Laplace�s equation� that is, that

@2u

@x2
+
@2u

@y2
= 0 and

@2v

@x2
+
@2v

@y2
= 0

In addition, show that u and v satisfy the Cauchy-Riemann Equations

ux = vy; uy = �vx

28. Let i2 = �1 and suppose that u (x; y) and v (x; y) are such that

(x+ iy)
4
= u (x; y) + i v (x; y)

Find u and v and show that both satisfy Laplace�s equation� that is, that

@2u

@x2
+
@2u

@y2
= 0 and

@2v

@x2
+
@2v

@y2
= 0

In addition, show that u and v satisfy the Cauchy-Riemann Equations

ux = vy; uy = �vx

29. Suppose that a large population of micro-organisms (e.g., bacteria or plank-
ton) is distributed along the x-axis. If u (x; t) is the population per unit length
at location x and at time t; then u (x; t) satis�es a di¤usion equation of the form

@u

@t
= �

@2u

@x2
+ ru
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where � is the rate of dispersal and r is the birthrate of the micro-organisms. If
� and r are positive constants, then what is a separated solution of this di¤u-
sion equation? (adapted from Mathematical Models in Biology, Leah Edelstein-
Keshet, Random House, 1988, p. 441).
30. Suppose that t denotes time and x denotes the age of a cell ina given
population of cells, and let

u (x; t) dx =
number of cells whose

age at time t is
between x and x+ dx

Then u (x; t) is the cell density per unit age at time t; and given appropriate
assumptions, it satis�es

@u

@t
+ v0

@u

@x
= d0

@2u

@x2

where v0 and d0 are positive constants. What is the separated solution to
this equation? (adapted from Mathematical Models in Biology, Leah Edelstein-
Keshet, Random House, 1988, p. 466).
31. Find the separated solution of the telegraph equation with zero self induc-
tance:

@2u

@x2
= RC

@u

@t
+RSu

Here u (x; t) is the electrostatic potential at time t at a point x units from one
end of a transmission line, and R, C; and S are the resistance, capacitance, and
leakage conductance per unit length, respectively.
32. If V (x; t) is the membrane voltage at time t in seconds and at a distance
x from the distal (i.e., initial) end of a uniform, cylindrical, unbranched section
of a dendrite, then V (x; t) satis�es

d

4Ri

@2V

@x2
= Cm

@V

@t
+

1

Rm
V (12)

where d is the diameter of the cylindrical dendritic section, Ri is the resistivity
of the intracellular �uid, Cm is the membrane capacitance, and Rm is the mem-
brane resistivity. Find a separated solution to (12) given that Cm; Rm; and Ri
are positive constants.
33. In Quantum mechanics, a particle moving in a straight line is said to be in
a state  (x; t) if Z b

a

j (x; t)j2 dx

represents the probability of the particle being in the interval [a; b] on the line
at time t: If a subatomic particle is traveling in a straight line close to the speed
of light, then it�s state satis�es the one dimensional Klein-Gordon Equation

@2 

@t2
� @2 

@x2
= � 
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where � > 0 is constant. Find the separated solution of the one dimensional
Klein-Gordon equation.
34. If a subatomic particle is traveling in a straight line much slower than
the speed of light and no forces are acting on that particle, then its state (as
explained in problem 33) satis�es the one dimensional Schrödinger equation of
a single free particle.

@ 

@t
= �i@

2 

@x2
(13)

where i2 = �1: Find the separated solution of (13) (Hint: you will need to use
Euler�s identity

eit = cos (t) + i sin (t)

35. Show that if u (x; t) and v (x; t) are both solutions to the one dimensional
wave equation

@2u

@t2
= a2

@2u

@x2

then so also is the function w (x; t) = Au (x; t) + Bv (x; t) where A and B are
constants. What does this say about the wave equation?
36. Show that if u (x; y) and v (x; y) are both solutions to Laplace�s equation

@2u

@x2
+
@2u

@y2
= 0

then so also is the function w (x; y) = Au (x; y) + Bv (x; y) where A and B are
constants. What does this tell us about Laplace�s equation?
37. Suppose that the initial conditions for the guitar string in example 6 are

u (x; 0) = sin
�x
2

�
and

@u

@t
(x; 0) = 0

What are the coe¢ cients bn in the solution (10) for these initial conditions?
38. Solve the vibrating string problem for the boundary conditions

@u

@x
(0; t) = 0 and

@u

@x
(l; t) = 0

and for the initial conditions u (x; 0) = f (x) and ut (x; 0) = 0:
39. Heat Equation I: Find the general solution to the heat equation

@u

@t
= k

@2u

@x2

subject to the boundary conditions

u (0; t) = 0 u (�; t) = 0

40. Heat Equation II: If the initial condition is u (x; 0) = �x�x2; then what
are the Fourier coe¢ cients in the general solution found in exercise 39?
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41. Laplace�s Equation I: Find the general solution to the Laplace equation

@2u

@x2
+
@2u

@y2
= 0

subject to the boundary conditions

u (0; y) = 0 u (�; y) = 0

42. Laplace�s Equation II: If the initial conditions are u (x; 0) = sin (x=2)
and uy (x; 0) = 0; then what are the Fourier coe¢ cients in the general solution
found in exercise 41?
43. Write to Learn: In a short essay, explain in your own words why an
equation of the form

f (x; y) = g (t)

implies that both f (x; y) and g (t) are constant. (x; y; and t are both indepen-
dent variables).
44. *What is a separated solution of the 2 -dimensional wave equation

@2u

@t2
= a

@2u

@x2
+ b

@2u

@y2

45. Find a separated solution of the following nonlinear wave equation:

@u

@t
= cu

@u

@x
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