The Vector Surface Differential   

We often define the vector surface differential dS = n  dS, so that the flux integral becomes
Flux =   ó
õ
ó
õ

S
 
  F· dS
For example, if r( u,v) is the regular parameterization of a surface S, then the unit normal is of the form
n =  ru×rv
| | ru×rv| |
and correspondingly, the vector surface differential becomes
dS = n  dS =  ru×rv
|| ru×rv| |
  | | ru×rv| | dudv = ( ru×rv) dudv
That is, dS = ( ru×rv)dudv, so that the flux integral becomes
Flux =   ó
õ
ó
õ

S
 
F · dS = ó
õ
ó
õ

S
 F·( ru×rv) dudv
which eliminates the need to calculate the norm of the cross product.      

EXAMPLE 3    What is the flux of the vector field F( x,y,z) = á y,x,z ñ through the surface
r( u,v) = á cos( u) ,sin(u) ,2v ñ ,    u  in  [ 0,p],  v  in  [ 0,1]
Solution: Since ru = á -cos( u),sin( u) ,0 ñ and rv = á0,0,1 ñ , it follows that
ru×rv
=
á -cos( u),sin( u) ,0 ñ × á 0,0,2 ñ
=
á 2sin( u) ,2cos( u) ,0 ñ
As a result, dS = á 2sin( u) ,2cos(u) ,0 ñ dudv. Since x = cos( u) , y = sin( u) , and z = 2v, we have
Flux
=
ó
õ
ó
õ

S
 
 á y,x,z ñ ·dS
=
ó
õ
p

0 
ó
õ
1

0 
á sin( u) ,cos(u) ,2v ñ · á sin( u) ,cos( u) ,0 ñ dudv
=
ó
õ
p

0 
ó
õ
1

0 
sin2( u) +cos2(u) +0  dudv
=
p    units  of  volume
units  of  time
LiveGraphics3d Applet

       

EXAMPLE 4    What is the flux of F(x,y,z) = á y,-x,z ñ through the surface
r( u,v) = á u+v,u-v,u ñ ,   u  in  [ 0,1] ,  v  in  [ 0,1]
Solution: Since ru = á 1,1,1 ñ and rv = á 1,-1,0 ñ , it follows that
ru×rv = á 1,1,-2 ñ
Thus, dS = á 1,1,-2 ñ du dv and the flux is
Flux
=
ó
õ
1

0 
ó
õ
1

0 
á y,-x,z ñ · á 1,1,-2 ñ dudv
=
ó
õ
1

0 
ó
õ
1

0 
( y-x-2z)   dudv
Since x = u+v, y = u-v, and z = u on the surface, we have
Flux
=
ó
õ
1

0 
ó
õ
1

0 
( u-v-( u+v) -2u)  dudv
=
ó
õ
1

0 
ó
õ
1

0 
( -2u-2v) dudv
=
-2    units  of  volume
units  of  time

       

The surface z = g( x,y) can be parametrized by r( x,y) = á x,y,g( x,y) ñ .  Since  rx = á 1,0,gx ñ and ry = á 0,1,gy ñ, their cross product is
ry×ry = á 1,0,gx ñ× á 0,1,gy ñ = á-gx,-gy,1 ñ
If F = á M,N,P ñ and z = g( x,y) is over a region R in the xy-plane, then
Flux   ó
õ
ó
õ

S
 F· dS ó
õ
ó
õ

R
áM,N,P ñ × á -gx,-gy,1 ñ   dA
which reduces to
Flux ó
õ
ó
õ

S
F· dS = ó
õ
ó
õ

R
(P-Mgx-Ngy) dA

       

EXAMPLE 5    What is the flux of the vector field F( x,y,z) = á x,y,3z ñ through the surface z = x2+y2 over the unit circle:
Solution: If we identify g( x,y) = x2+y2, then gx = 2x and gy = 2y, so that
Flux
=
ó
õ
ó
õ

R
( 3z-xgx-ygy) dA
=
ó
õ
ó
õ

R
( 3x2+3y2-x( 2x) -y( 2y)) dA
=
ó
õ
ó
õ

R
( x2+y2) dA
Since R is the unit circle, we transform to polar coordinates to obtain
Flux
=
ó
õ
2p

0 
ó
õ
1

0 
r  rdrdq
=
ó
õ
2p

0 
ó
õ
1

0 
r2drdq
=
ó
õ
2p

0 
 1
3
dq
=
 2p
3
    units  of  volume
units  of  time

       

Check your Reading: What type of surface is given in example 4?