The Vector Surface Differential
We often define the vector surface differential dS = n dS, so that the flux integral becomes
For example, if r( u,v) is the regular
parameterization of a surface S, then the unit normal is of the form
and correspondingly, the vector surface differential becomes
dS = n dS = |
ru×rv
|| ru×rv| |
|
| | ru×rv| | dudv = ( ru×rv) dudv |
|
That is, dS = ( ru×rv)dudv, so that the flux integral becomes
Flux = |
ó õ
|
ó õ
|
S |
F · dS = |
ó õ
|
ó õ
|
S |
F·( ru×rv) dudv |
|
which eliminates the need to calculate the norm of the cross product.
EXAMPLE 3 What is the flux of the vector field F( x,y,z) =
á y,x,z
ñ through the surface
r( u,v) =
á cos( u) ,sin(u) ,2v
ñ , u in [ 0,p], v in [ 0,1] |
|
Solution: Since ru =
á -cos( u),sin( u) ,0
ñ and rv =
á0,0,1
ñ , it follows that
|
|
á -cos( u),sin( u) ,0
ñ ×
á 0,0,2
ñ |
| |
|
á 2sin( u) ,2cos( u) ,0
ñ |
|
|
As a result, dS =
á 2sin( u) ,2cos(u) ,0
ñ dudv. Since x = cos( u) , y = sin( u) , and z = 2v, we have
|
|
| |
|
|
ó õ
|
p
0
|
|
ó õ
|
1
0
|
á sin( u) ,cos(u) ,2v
ñ ·
á sin( u) ,cos( u) ,0
ñ dudv |
| |
|
|
ó õ
|
p
0
|
|
ó õ
|
1
0
|
sin2( u) +cos2(u) +0 dudv |
| |
|
p |
units of volume
units of time
|
|
|
|
EXAMPLE 4 What is the flux of F(x,y,z) =
á y,-x,z
ñ through the surface
r( u,v) =
á u+v,u-v,u
ñ , u in [ 0,1] , v in [ 0,1] |
|
Solution: Since ru =
á 1,1,1
ñ
and rv =
á 1,-1,0
ñ , it follows that
Thus,
dS = á 1,1,-2
ñ du dv and the flux is
|
|
|
ó õ
|
1
0
|
|
ó õ
|
1
0
|
á y,-x,z
ñ ·
á 1,1,-2
ñ dudv |
| |
|
|
ó õ
|
1
0
|
|
ó õ
|
1
0
|
( y-x-2z) dudv |
|
|
Since x = u+v, y = u-v, and z = u on the surface, we have
|
|
|
ó õ
|
1
0
|
|
ó õ
|
1
0
|
( u-v-( u+v) -2u) dudv |
| |
|
|
ó õ
|
1
0
|
|
ó õ
|
1
0
|
( -2u-2v) dudv |
| |
|
-2 |
units of volume
units of time
|
|
|
|
The surface z = g( x,y) can be parametrized by r( x,y) =
á x,y,g( x,y)
ñ . Since rx =
á 1,0,gx
ñ and ry =
á 0,1,gy
ñ, their cross product is
ry×ry =
á 1,0,gx
ñ×
á 0,1,gy
ñ =
á-gx,-gy,1
ñ |
|
If F =
á M,N,P
ñ and z = g( x,y)
is over a region R in the xy-plane, then
Flux =
|
ó õ
|
ó õ
|
S |
F· dS = |
ó õ
|
ó õ
|
R |
áM,N,P
ñ ×
á -gx,-gy,1
ñ dA |
|
which reduces to
Flux = |
ó õ
|
ó õ
|
S |
F· dS = |
ó õ
|
ó õ
|
R |
(P-Mgx-Ngy) dA |
|
EXAMPLE 5 What is the flux of the vector field F( x,y,z) =
á x,y,3z
ñ through the
surface z = x2+y2 over the unit circle:
Solution: If we identify g( x,y) = x2+y2, then gx = 2x and gy = 2y, so that
|
|
| |
|
ó õ
|
ó õ
|
R |
( 3x2+3y2-x( 2x) -y( 2y)) dA |
| |
|
|
|
Since R is the unit circle, we transform to polar coordinates to obtain
|
|
| |
|
| |
|
| |
|
|
2p
3
|
|
units of volume
units of time
|
|
|
|
Check your Reading: What type of surface is given in example 4?