Triple Integrals in Cylindrical Coordinates

Many applications involve densities for solids that are best expressed in non-
Cartesian coordinate systems. In particular, there are many applications in
which the use of triple integrals is more natural in either cylindrical or spherical
coordinates.

For example, suppose that f (r,68) > g (r,0) in polar coordinates and that
U (z,y,z) is a continuous function. If S is the solid between z = f (x,y) and
z = g (z,y) over a region R in the zy-plane, then

///SU(x,y,z)dV://R [/g::j/)U(x,y,z)dz

Let’s suppose now that in polar coordinates, R is bounded by 6 = «, 6 = §,
r =p(0), and r = ¢ (). Since dA = rdrdf in polar coordinates, a change of
variables into cylindrical coordinates is given by

B ra®) rg(r.0)
///U(x,y,z)dV:/ / / U (rcos,rsin(0),z) r dzdrdd (1)
S a Jp(0) Jf(r0)

In practice, however, it is often more straightforward to simply evaluate the
first integral in z and then transform the resulting double integral into polar
coordinates.
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EXAMPLE 1 Evaluate the following
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Solution: Rather than employ (1) directly, let’s first evaluate the
integral in z. That is,
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where R is the quarter of the unit circle in the 1st quadrant.
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In polar coordinates, R is bounded by § = 0, 6 = /2, r = 0, and
r = 1. Thus,
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Check your Reading: Where did the r come from in (1)?

Triple Integrals in Spherical Coordinates

If U (r,0, 2) is given in cylindrical coordinates, then the spherical transformation

z=pcos(¢), r=psin ()

transforms U (r, 0, z) into U (psin (¢) , 6, pcos (¢)) . Similar to polar coordinates,
we have
9(zr)

= pdpd
3 (pg) Pl

so that a triple integral in cylindrical coordinates becomes

q(0) q(0) g(psin(e),0)
/ / / (r,0,2) rdzdrdd = / / / U (psin (¢), 0, pcos (¢)) rp dpdp db
f(r,0) f(psin(¢),0

However, r = psin (¢), which leads to the following;:




Triple Integrals in Spherical Coordinates: If S is a solid
bounded in spherical coordinates by 0 = «, 8 = 3, ¢ = p(0),
d=q(0), p=[f(¢,0),and p=g(¢,0), and if U (p, ¢, ) is contin-
uous on S, then

///sU(p’ $,0)dV = /j /p(q;j) /f:;¢;j)U(p,¢,0) p?sin (¢) dpdgdd
- @)

In particular, it is important to notice that
dV = p*sin (¢) dpdedd

and it is acceptable to use dV = rpdpdpdf since r = psin(¢). It is also
important to remember the relationships given by the two right triangles relating

({,C,y7 Z) to (p7 (ba 9) .
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In particular, z2 442 = r2 implies 2 + 2 = p?sin? (¢) and 72 + 22 = p? implies
that
2?4yt 2t =g (3)



Also remember that 6 ranges over [0, 27, while ¢ ranges over [0, 7].

8 ranges 4

from 0 to 2n
$ ranges
from 0 to =

EXAMPLE 2 Use spherical coordinates to evaluate the triple in-
tegral

Vi—z? 1— xQ—y
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Solution: To begin with, we notice that this iterated integral re-

duces to
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sphere

As a result, in spherical coordinates it becomes

Azﬂ /OW /01 Vp? p*sin (¢) dpdedd

since 22 + y? + 22 = p2. Thus, we have
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EXAMPLE 3 Find the volume of the solid above the cone 22 =
2% 4 y? and below the plane z = 1.

Solution: The cone 2% = 2% + y? corresponds to ¢ = 7/4 in spher-
ical.

p=sec(¢) —»

6=0 to 21 p=0

Moreover, z = 1 corresponds to pcos(¢) = 1, or p = sec (¢). Thus,

27 pm/4 psec(o)
V= / / / v = / / / p? sin (¢) dpdpdd
s 0 0 0
2 /4 3 sec(¢)
= / / P sin
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However, sec (¢) sin (¢) = tan (¢), so that

(¢) dpdf
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V= 3 /0 /0 tan (¢) sec” (¢) dodf

Thus, v = tan(¢), du = sec?(¢)dp, u(0) = tan(0) = 0 and
u(mw/4) = tan (r/4) = 1 yields
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Check your Reading: Why does the cone 2> = 2%+ correspond to ¢ = /47

Applications in Spherical and Cylindrical Coordinates

Triple integrals in spherical and cylindrical coordinates occur frequently in ap-
plications. For example, it is not common for charge densities and other real-
world distributions to have spherical symmetry, which means that the density
is a function only of the distance p. ( Note: Scientists and engineers use p both
to denote charge density and also to denote distance in spherical coordinates.
The context in which p appears will indicate how it is being used).

EXAMPLE 4 The charge density for a certain charge cloud con-
tained in a sphere of radius 10 cm centered at the origin is given

by
C
p(z,y,2) = 100y/ 22 + y2 + 22 L3
cm
What is the total charge contained within a sphere? ( uC = micro-
coulombs )

Solution: If Q denotes the solid sphere of radius 10 cm centered
at the origin, then the total charge is

Q:///lOO\/xQ—FyQ—I—szV
Q

However, 22 4+ y2 + 22 = p? leads to

27 T 10
Q= 100/ / / p p?sin(¢) dpdpdd
o Jo Jo



: 2500sin ¢ (i.e., charge density is proportional to p ). Evaluation of
the integral leads to
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= 100/ 5000d0
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= 1,000,0007 uC

which is @ = w coulombs.

Triple integrals in spherical and cylindrical coordinates are common in the study
of electricity and magnetism. In fact, quantities in the fields of electricity and
magnetism are often defined in spherical coordinates to begin with.

EXAMPLE 5 The power emitted by a certain antenna has a power
density per unit volume of

P,
p(p,¢,0) = ;3 sin (¢) cos” (0)

where Py is a constant with units in Watts. What is the total power
within a sphere of radius 10 m?

Solution: The total power P will satisfy

/ / /Q %sifl (6) cos? () dV
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Let us now let u = cos (¢) , du = — cos (¢) do, u (0) =1, and u (1) =
—1. Then

2 -1
P = —-10P / (1 —u2)2 cos? (0) dudf
o J1
T 16

= 10PR, — cos?
00/ 15cos¢9d9

0



However, 2 cos? () = cos (26) + 1, so that

80 2 32
P= %PO/ (cos (20) +1)do = ?WPO Watts
0

Check your Reading: Why does the cone 22 = x2+y2 correspond to ¢ = 7/4?

The Inverse Square Law

Suppose two point masses with masses m and M respectively are located a dis-
tance r apart. Sir Isaac Newton’s inverse square law states that the magnitude
|F'| of the gravitational force between the two point masses is

= (@)

IF| =G

where G is the universal gravitational constant. However, as Newton realized
and struggled with for some time, objects in the real world are not point-masses
and instead, the law (4) might need to be modified.

In particular, let’s suppose that one of the bodies is not a ”point-mass,” but
instead is a sphere of radius R with uniform mass density u. For 7 > R constant,
let’s suppose that the sphere is centered at (0,0, ) . If the other body is a point-
mass ”satellite” of mass m located at the origin, then the gravitational force is
directed along the z-axis.
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Suppose now that a small "piece” of the sphere is located at a point (p, ¢, 0)
(in spherical coordinates), and suppose that it has a small mass dM. Then the



distance between the small piece and the origin is p.

= dhf = wdv

satellite

X

so that by (4) the "small” magnitude d|F| of the gravitational force between
the small ”piece” and the satellite is

—Gm dM

e (5)

The amount of d|F| in the vertical direction is then given by cos (¢) d|F| (see
above).
Thus, the total gravitational force in the vertical direction is

Fi= [ [ [es@ar= [ [ [ ==l

where S is the sphere corresponding to the ”planet”. If dV denotes the volume
of a small "piece” of the sphere, then dM = pudV, which leads to

|F| = —Gmy / / /S Cozg‘“dv (6)

In Cartesian coordinates, the sphere S is given by

d|F| =

2 +1y2 +(z—r) = R? or 22+ y? 4+ 22— 2rz 12 = R?
In spherical coordinates this becomes
p* —2rpcos () +1r2 —R* =0
which by the quadratic formula leads to
p = rcos(p)E/R2—7r2(1—cos?(¢))

= rcos(p) =4/ R2 —r2sin? (¢)




Thus, the sphere is contained between

py =7rcos¢ — 1/ R2 —r2sin® (@) and p, =1 cos ¢+ /R2 — r2sin® (@)

Let us also note that ¢ ranges from 0 to sin™* (R/r) while # ranges over [0, 27] .
b =0
i k' pi = reos(g) + VR - T sinZ(g)

¢ = sin (R

m=mMﬂ{ﬁLﬂﬂﬂ@
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Evaluating (6) in spherical coordinates leads to

21 psin T (R/T)  ppo
IF| = —Gmy / / / COS§¢) p? sin (¢) dpdedd
0 0 p P

21 psin T (R/T)  ppo
—Gmypu / / / cos (¢) sin (¢) dpdpdd
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27 psinT ' (R/7) .
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Since py — py = 2 (R? — 1% sin® (¢)) ? | this in turn leads to

27 psin Y (R/7)
|F| = —2Gm,UJA /0 (R* —r? sin? (¢))1/2 sin (¢) cos (¢) dpdb

If we let u (¢) = R? — r2sin® (¢), then the limits of integration become
R2
w@ =R ond  u (Sin_l <R>) - (2) =0
r T
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Moreover, du = —2r22sin (¢) cos (¢) dé, so that

27 psin” T (R/r)
|F| = Gmy / (R?—r? sin? (¢))1/2 (—2r”sin (¢) cos (¢)) dodf
o Jo

However, the volume of the sphere is V = 47R3/3, so that the mass of the
sphere is M = uV = pdrR?/3. Thus, we have shown that

—GMm

7l ==

That is, a uniformly-dense spherical ”planet” of mass M and a point-mass
of mass M at the center of the sphere have the same gravitational attraction on
a 7satellite” point mass outside the sphere. Since the electromagnetic force also
satisfies an inverse square law, this result also says that the electromagnetic force
between spheres with uniform charge density is equivalent to the electromagnetic
force between point-charges.

Exercises
Convert to cylindrical coordinates and evaluate:
1. f f% fo 2 dzdydz 2. fo I% fo 2 dzdydz
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Evaluate the following triple integrals using spherical coordinates.

11 f f Vi—z? f\/ 1—z2—y? _dzdydz
. —V/1—z2 1— J;2_y2 T24y2+22
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16— 352 —92 dzdydx
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Identify the solid, and then find its volume.

19. p=0top=1 20.
¢o=0top=m
0=0tof=2m

2. p=0top=1 22.
p=0top=7%
0=0tof=2m

23. below 22 +y? + 22 =1 24.

above 22 + 3% = 2?2

12. f f,l Vi—az? f\/l 22—y dzdydx

V1—2x2 1_ iz_yz x2+y2422

VR f‘l i

ydzdydx
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f04 fo\/ 16—x2 f(;/ 16—12—y2 xzdzdydx
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p=1top=2
¢=0top=m
0=0tofd=2rm
p=0top=1
¢p=0top=m
0=0tof=m

inside 22 + 3% =1
between z =0 and 2 =1

The following are volume charge densities of charge clouds contained in a sphere
of radius 1 meter. Calculate the total charge inside the sphere. Consider py to

be a constant.
25. p(x y,2) =2C/m?

27, p(x,y,2) = pov/22 +y2 + 22 C/m?
29.  p(x,y,2) = ppe” Vo T+ O m?

% p(r.y.2) = 4C/m

28 (v,y,2) = ——L—" C/m3
- oy, e—

30 —(22+42+22)

p(z,y,2) :Poﬁ

31. The solid cone between the zy-plane and the right circular cone (z — 1)2 =

22 + y? has a volume charge density of

p(x,y,z):l— (x2+y2)z2

What is the total charge contained inside the solid cone?
32. Suppose that two concentric spheres of radius a and b, respectively, with
b > a are centered at the origin, and suppose that the volume charge density

between the two spheres is

p(p,¢,0) =

Po(b_

a) 22

12

(22 +y2 + 28)°/



with p, constant. What is the total charge between the two spheres?
33. A certain sphere of radius 1 meter centered at the origin has a mass

density of
( )= Va2 +y?+ 22 kg
plwy,z) = Va? +y° + 2% —5

What is the mass of the sphere?
34. Suppose that the solid S is the "spherical cap” between 22 +y2 + 2% = 2
and z = 1 if the mass density is
z

p(x,y,2) = ,
(22 + g2 + 22)°/

35. What is the center of mass of the hemisphere x2 + 3% + 22 = R? with
z > 0 if the mass-density p of the hemisphere is constant?

36. What is the center of mass of the solid above 22 + y? = 22 and below
22 + y? + 22 = 1 if the mass-density y is constant?

37. In example 6 of section 6, it is shown that the gravitational potential
between a mass m located at the point (0,0, 7) and a sphere of radius R centered
at the origin with a constant mass density p is given by

U:‘Gm/UW L

x2—|—y2+(z—r)2

where S is the sphere. Convert to triple integrals and evaluate for r > R to
show that a sphere with uniform mass density has the same potential as a point
mass, namely,

—-GmM

r

38. What is the gravitational potential of a sphere of radius R with uniform
mass-density if 7 < R (that is, when the satellite is inside the earth)?

39. Write to Learn: The right circular cone with height h and base
with radius R is the solid below the plane z = h and above the cone R?z? =
h? (x2 + y2). In a short essay, show that the cone corresponds to

¢ =tan"! (g)

and then use integration in spherical coordinates to find its volume.
40. Write to Learn: In a short essay, explain why if f (z,y, z)is a function
only of the distance of a point (z,y, z) from the origin—that is, if

f(@y.2) =1 (Vo + 7+ 22)

for all (z,y,z)—and if S is a sphere of radius R centered at the origin, then

///Sf(x,y,Z)dV=4ﬂ/ORf(p) p* dp
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