
Triple Integrals in Cylindrical Coordinates

Many applications involve densities for solids that are best expressed in non-
Cartesian coordinate systems. In particular, there are many applications in
which the use of triple integrals is more natural in either cylindrical or spherical
coordinates.
For example, suppose that f (r; �) � g (r; �) in polar coordinates and that

U (x; y; z) is a continuous function. If S is the solid between z = f (x; y) and
z = g (x; y) over a region R in the xy-plane, thenZ Z Z

S

U (x; y; z) dV =

ZZ
R

"Z f(x;y)

g(x;y)

U (x; y; z) dz

#
dA

Let�s suppose now that in polar coordinates, R is bounded by � = �; � = �;
r = p (�) ; and r = q (�) : Since dA = rdrd� in polar coordinates, a change of
variables into cylindrical coordinates is given byZ Z Z

S

U (x; y; z) dV =

Z �

�

Z q(�)

p(�)

Z g(r;�)

f(r;�)

U (r cos �; r sin (�) ; z) r dzdrd� (1)

In practice, however, it is often more straightforward to simply evaluate the
�rst integral in z and then transform the resulting double integral into polar
coordinates.

EXAMPLE 1 Evaluate the followingZ 1

0

Z p
1�x2

0

Z 2xy

0

�
x2 + y2

�
dzdydx

Solution: Rather than employ (1) directly, let�s �rst evaluate the
integral in z. That is,Z 1

0

Z p
1�x2

0

Z 2xy

0

�
x2 + y2

�
dzdydx =

Z 1

0

Z p
1�x2

0

�
zx2 + zy2

���2xy
0

dydx

=

Z 1

0

Z p
1�x2

0

2xy
�
x2 + y2

�
dydx

=

Z Z
R

2xy
�
x2 + y2

�
dA
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where R is the quarter of the unit circle in the 1st quadrant.

In polar coordinates, R is bounded by � = 0, � = �=2; r = 0; and
r = 1: Thus,Z 1

0

Z p
1�x2

0

Z 2xy

0

�
x2 + y2

�
dzdydx =

Z �=2

0

Z 1

0

2r cos (�) r sin (�) r2 rdrd�

=

Z �=2

0

Z 1

0

sin (2�) r5 drd�

=

Z �=2

0

sin (2�)
r6

6

����1
0

d�

=

Z �=2

0

1

6
sin (2�) d�

=
1

6

Check your Reading: Where did the r come from in (1)?

Triple Integrals in Spherical Coordinates

If U (r; �; z) is given in cylindrical coordinates, then the spherical transformation

z = � cos (�) ; r = � sin (�)

transforms U (r; �; z) into U (� sin (�) ; �; � cos (�)) : Similar to polar coordinates,
we have

@ (z; r)

@ (�; �)
= �d�d�

so that a triple integral in cylindrical coordinates becomesZ �

�

Z q(�)

p(�)

Z g(r;�)

f(r;�)

U (r; �; z) r dzdrd� =

Z �

�

Z q(�)

p(�)

Z g(� sin(�);�)

f(� sin(�);�)

U (� sin (�) ; �; � cos (�)) r� d�d� d�

However, r = � sin (�) ; which leads to the following:
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Triple Integrals in Spherical Coordinates: If S is a solid
bounded in spherical coordinates by � = �, � = �; � = p (�) ;
� = q (�) ; � = f (�; �) ; and � = g (�; �) ; and if U (�; �; �) is contin-
uous on S; thenZ Z Z

S

U (�; �; �) dV =

Z �

�

Z q(�)

p(�)

Z g(�;�)

f(�;�)

U (�; �; �) �2 sin (�) d�d�d�

(2)

In particular, it is important to notice that

dV = �2 sin (�) d�d�d�

and it is acceptable to use dV = r�d�d�d� since r = � sin (�) : It is also
important to remember the relationships given by the two right triangles relating
(x; y; z) to (�; �; �) :

In particular, x2+y2 = r2 implies x2+y2 = �2 sin2 (�) and r2+z2 = �2 implies
that

x2 + y2 + z2 = �2 (3)
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Also remember that � ranges over [0; 2�] ; while � ranges over [0; �].

EXAMPLE 2 Use spherical coordinates to evaluate the triple in-
tegral Z 1

�1

Z p
1�x2

�
p
1�x2

Z p1�x2�y2
�
p
1�x2�y2

p
x2 + y2 + z2 dzdydx

Solution: To begin with, we notice that this iterated integral re-
duces to Z Z Z

unit
sphere

p
x2 + y2 + z2dV

As a result, in spherical coordinates it becomesZ 2�

0

Z �

0

Z 1

0

p
�2 �2 sin (�) d�d�d�

since x2 + y2 + z2 = �2: Thus, we haveZ 2�

0

Z �

0

Z 1

0

�3 sin (�) d�d�d� =

Z 2�

0

Z �

0

Z 1

0

�3 sin (�) d�d�d�

=

Z 2�

0

Z �

0

�4

4

����1
0

sin (�) d�d�

=
1

4

Z 2�

0

Z �

0

sin (�) d�d�

=
1

4

Z 2�

0

� cos (�)j�0 d�
= �
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EXAMPLE 3 Find the volume of the solid above the cone z2 =
x2 + y2 and below the plane z = 1:

Solution: The cone z2 = x2 + y2 corresponds to � = �=4 in spher-
ical.

Moreover, z = 1 corresponds to � cos (�) = 1; or � = sec (�) : Thus,

V =

Z Z Z
S

dV =

Z 2�

0

Z �=4

0

Z sec(�)

0

�2 sin (�) d�d�d�

=

Z 2�

0

Z �=4

0

�3

3

����sec(�)
0

sin (�) d�d�

=
1

3

Z 2�

0

Z �=4

0

sec3 (�) sin (�) d�d�

However, sec (�) sin (�) = tan (�) ; so that

V =
1

3

Z 2�

0

Z �=4

0

tan (�) sec2 (�) d�d�

Thus, u = tan (�) ; du = sec2 (�) d�, u (0) = tan (0) = 0 and
u (�=4) = tan (�=4) = 1 yields

V =
1

3

Z 2�

0

Z 1

0

udud� =

=
1

3

Z 2�

0

1

2
d�

=
�

3
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Check your Reading: Why does the cone z2 = x2+y2 correspond to � = �=4?

Applications in Spherical and Cylindrical Coordinates

Triple integrals in spherical and cylindrical coordinates occur frequently in ap-
plications. For example, it is not common for charge densities and other real-
world distributions to have spherical symmetry, which means that the density
is a function only of the distance �. ( Note: Scientists and engineers use � both
to denote charge density and also to denote distance in spherical coordinates.
The context in which � appears will indicate how it is being used).

EXAMPLE 4 The charge density for a certain charge cloud con-
tained in a sphere of radius 10 cm centered at the origin is given
by

� (x; y; z) = 100
p
x2 + y2 + z2

�C

cm3

What is the total charge contained within a sphere? ( �C = micro-
coulombs )

Solution: If 
 denotes the solid sphere of radius 10 cm centered
at the origin, then the total charge is

Q =

Z Z Z



100
p
x2 + y2 + z2 dV

However, x2 + y2 + z2 = �2 leads to

Q = 100

Z 2�

0

Z �

0

Z 10

0

� �2 sin (�) d�d�d�
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: 2500 sin� (i.e., charge density is proportional to � ). Evaluation of
the integral leads to

Q = 100

Z 2�

0

Z �

0

�4

4

����10
0

sin (�) d�d�d�

= 100

Z 2�

0

Z �

0

2500 sin (�) d�d�

= 100

Z 2�

0

5000d�

= 1; 000; 000� �C

which is Q = � coulombs.

Triple integrals in spherical and cylindrical coordinates are common in the study
of electricity and magnetism. In fact, quantities in the �elds of electricity and
magnetism are often de�ned in spherical coordinates to begin with.

EXAMPLE 5 The power emitted by a certain antenna has a power
density per unit volume of

p (�; �; �) =
P0
�2
sin4 (�) cos2 (�)

where P0 is a constant with units in Watts. What is the total power
within a sphere of radius 10 m?

Solution: The total power P will satisfy

P =

Z Z Z



P0
�2
sin4 (�) cos2 (�) dV

=

Z 2�

0

Z �

0

Z 10

0

P0
�2
sin4 (�) cos2 (�) �2 sin (�) d�d�d�

= P0

Z 2�

0

Z �

0

Z 10

0

sin4 (�) sin (�) cos2 (�) d�d�d�

= 10P0

Z 2�

0

Z �

0

�
1� cos2 (�)

�2
sin (�) cos2 (�) d�d�

Let us now let u = cos (�) ; du = � cos (�) d�; u (0) = 1; and u (�) =
�1: Then

P = �10P0
Z 2�

0

Z �1

1

�
1� u2

�2
cos2 (�) dud�

= 10P0

Z 2�

0

16

15
cos2 �d�
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However, 2 cos2 (�) = cos (2�) + 1; so that

P =
80

25
P0

Z 2�

0

(cos (2�) + 1) d� =
32�

5
P0 Watts

Check your Reading: Why does the cone z2 = x2+y2 correspond to � = �=4?

The Inverse Square Law

Suppose two point masses with masses m and M respectively are located a dis-
tance r apart. Sir Isaac Newton�s inverse square law states that the magnitude
jF j of the gravitational force between the two point masses is

jF j = GMm
r2

(4)

where G is the universal gravitational constant. However, as Newton realized
and struggled with for some time, objects in the real world are not point-masses
and instead, the law (4) might need to be modi�ed.
In particular, let�s suppose that one of the bodies is not a �point-mass,�but

instead is a sphere of radius R with uniform mass density �: For r > R constant,
let�s suppose that the sphere is centered at (0; 0; r) : If the other body is a point-
mass �satellite�of mass m located at the origin, then the gravitational force is
directed along the z-axis.

Suppose now that a small �piece� of the sphere is located at a point (�; �; �)
(in spherical coordinates), and suppose that it has a small mass dM: Then the
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distance between the small piece and the origin is �:

so that by (4) the �small�magnitude d jF j of the gravitational force between
the small �piece�and the satellite is

d jF j = �Gm dM

�2
(5)

The amount of d jF j in the vertical direction is then given by cos (�) d jF j (see
above).
Thus, the total gravitational force in the vertical direction is

jF j =
Z Z Z

S

cos (�) d jF j =
Z Z Z

S

�Gm cos (�)

�2
dM

where S is the sphere corresponding to the �planet�. If dV denotes the volume
of a small �piece�of the sphere, then dM = �dV; which leads to

jF j = �Gm�
Z Z Z

S

cos (�)

�2
dV (6)

In Cartesian coordinates, the sphere S is given by

x2 + y2 + (z � r)2 = R2 or x2 + y2 + z2 � 2rz + r2 = R2

In spherical coordinates this becomes

�2 � 2r� cos (�) + r2 �R2 = 0

which by the quadratic formula leads to

� = r cos (�)�
p
R2 � r2 (1� cos2 (�))

= r cos (�)�
q
R2 � r2 sin2 (�)
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Thus, the sphere is contained between

�1 = r cos��
q
R2 � r2 sin2 (�) and �2 = r cos�+

q
R2 � r2 sin2 (�)

Let us also note that � ranges from 0 to sin�1 (R=r) while � ranges over [0; 2�] :

Evaluating (6) in spherical coordinates leads to

jF j = �Gm�
Z 2�

0

Z sin�1(R=r)

0

Z �2

�1

cos (�)

�2
�2 sin (�) d�d�d�

= �Gm�
Z 2�

0

Z sin�1(R=r)

0

Z �2

�1

cos (�) sin (�) d�d�d�

= �Gm�
Z 2�

0

Z sin�1(R=r)

0

(�2 � �1) cos (�) sin (�) d�d�d�

Since �2 � �1 = 2
�
R2 � r2 sin2 (�)

�1=2
; this in turn leads to

jF j = �2Gm�
Z 2�

0

Z sin�1(R=r)

0

�
R2 � r2 sin2 (�)

�1=2
sin (�) cos (�) d�d�

If we let u (�) = R2 � r2 sin2 (�) ; then the limits of integration become

u (0) = R2 and u

�
sin�1

�
R

r

��
= R2 � r2

�
R2

r2

�
= 0
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Moreover, du = �2r22 sin (�) cos (�) d�; so that

jF j =
Gm�

r2

Z 2�

0

Z sin�1(R=r)

0

�
R2 � r2 sin2 (�)

�1=2 ��2r2 sin (�) cos (�)� d�d�
=

Gm�

r2

Z 2�

0

Z 0

R2

u1=2du d�

=
Gm�

r2

Z 2�

0

u3=2

3=2

����0
R2

d�

=
�Gm�
r2

Z 2�

0

2R3

3
d�

=
�Gm
r2

4�R3�

3

However, the volume of the sphere is V = 4�R3=3; so that the mass of the
sphere is M = �V = �4�R3=3: Thus, we have shown that

jF j = �GMm
r2

That is, a uniformly-dense spherical �planet�of mass M and a point-mass
of mass M at the center of the sphere have the same gravitational attraction on
a �satellite�point mass outside the sphere. Since the electromagnetic force also
satis�es an inverse square law, this result also says that the electromagnetic force
between spheres with uniform charge density is equivalent to the electromagnetic
force between point-charges.

Exercises
Convert to cylindrical coordinates and evaluate:

1.
R 1
�1
Rp1�x2
�
p
1�x2

R 2
0
z dzdydx 2.

R 1
0

Rp1�x2
�
p
1�x2

R 2
0
z dzdydx

3.
R 1
�1
Rp1�x2
�
p
1�x2

R 1
0

�p
x2 + y2 + z

�
dzdydx 4.

R 1
�1
Rp1�x2
�
p
1�x2

R 1
0
2z
p
x2 + y2 dzdydx

5.
R 1
�1
Rp1�x2
�
p
1�x2

R 1
0

dzdydx
x2+y2+1 6.

R 1
�1
R 0
�
p
1�x2

R 1
0

zdzdydx
x2+y2+1

7.
R 1
0

R x
0

R jxj+1
0

dz dydx
jxj+1 8.

R 1
0

R x
0

Rpx2+y2
0

dz dydxp
x2+y2

9.
Z 3

0

Z p
9�x2

0

R x2+y2
0

(z + 1)
2
dzdydx 10.

R 4
0

Rp16�x2
0

Rp16�x2�y2
0

z dzdydx
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Evaluate the following triple integrals using spherical coordinates.

11.
R 1
�1
Rp1�x2
�
p
1�x2

Rp1�x2�y2
�
p
1�x2�y2

dzdydx
x2+y2+z2 12.

R 1
�1
Rp1�x2
�
p
1�x2

Rp1�x2�y2
�
p
1�x2�y2

zdzdydx
x2+y2+z2

13.
R 1
�1
Rp1�x2
�
p
1�x2

Rp1�x2�y2
�
p
1�x2�y2

xdzdydx
x2+y2+z2 14.

R 1
�1
Rp1�x2
�
p
1�x2

Rp1�x2�y2
�
p
1�x2�y2

ydzdydx
x2+y2+z2

15.
R 4
�4
Rp16�x2
�
p
16�x2

Rp16�x2�y2
0

dzdydxp
x2+y2

16.
R 4
0

Rp16�x2
0

Rp16�x2�y2
�
p
16�x2�y2

dzdydxp
y2+z2

17.
R 3
0

Rp9�x2
0

Rp9�x2�y2
�
p
9�x2�y2

�
x2 + y2

�
dzdydx 18.

R 4
0

Rp16�x2
0

Rp16�x2�y2
0

x2dzdydx

Identify the solid, and then �nd its volume.

19. � = 0 to � = 1 20. � = 1 to � = 2
� = 0 to � = � � = 0 to � = �
� = 0 to � = 2� � = 0 to � = 2�

21. � = 0 to � = 1 22. � = 0 to � = 1
� = 0 to � = �

4 � = 0 to � = �
� = 0 to � = 2� � = 0 to � = �

23. below x2 + y2 + z2 = 1 24. inside x2 + y2 = 1
above x2 + y2 = z2 between z = 0 and z = 1

The following are volume charge densities of charge clouds contained in a sphere
of radius 1 meter. Calculate the total charge inside the sphere. Consider �0 to
be a constant.

25. � (x; y; z) = 2 C=m3 26. � (x; y; z) = 4 C=m3

27. � (x; y; z) = �0
p
x2 + y2 + z2 C=m3 28. � (x; y; z) = �0p

x2+y2+z2
C=m3

29. � (x; y; z) = �0e
�
p
x2+y2+z2 C=m3 30. � (x; y; z) = �0

e
�(x2+y2+z2)p
x2+y2+z2

31. The solid cone between the xy-plane and the right circular cone (z � 1)2 =
x2 + y2 has a volume charge density of

� (x; y; z) = 1�
�
x2 + y2

�
z2

What is the total charge contained inside the solid cone?
32. Suppose that two concentric spheres of radius a and b; respectively, with

b > a are centered at the origin, and suppose that the volume charge density
between the two spheres is

� (�; �; �) =
�0 (b� a) z2

(x2 + y2 + z3)
5=2
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with �0 constant. What is the total charge between the two spheres?
33. A certain sphere of radius 1 meter centered at the origin has a mass

density of

� (x; y; z) =
p
x2 + y2 + z2

kg

m3

What is the mass of the sphere?
34. Suppose that the solid S is the �spherical cap�between x2+y2+z2 = 2

and z = 1 if the mass density is

� (x; y; z) =
z

(x2 + y2 + z2)
3=2

35. What is the center of mass of the hemisphere x2 + y2 + z2 = R2 with
z � 0 if the mass-density � of the hemisphere is constant?
36. What is the center of mass of the solid above x2 + y2 = z2 and below

x2 + y2 + z2 = 1 if the mass-density � is constant?
37. In example 6 of section 6, it is shown that the gravitational potential

between a massm located at the point (0; 0; r) and a sphere of radius R centered
at the origin with a constant mass density � is given by

U = �Gm
Z Z Z

S

�dVq
x2 + y2 + (z � r)2

where S is the sphere. Convert to triple integrals and evaluate for r > R to
show that a sphere with uniform mass density has the same potential as a point
mass, namely,

U =
�GmM

r

38. What is the gravitational potential of a sphere of radius R with uniform
mass-density if r < R (that is, when the satellite is inside the earth)?
39. Write to Learn: The right circular cone with height h and base

with radius R is the solid below the plane z = h and above the cone R2z2 =
h2
�
x2 + y2

�
. In a short essay, show that the cone corresponds to

� = tan�1
�
R

h

�
and then use integration in spherical coordinates to �nd its volume.
40. Write to Learn: In a short essay, explain why if f (x; y; z)is a function

only of the distance of a point (x; y; z) from the origin� that is, if

f (x; y; z) = f
�p

x2 + y2 + z2
�

for all (x; y; z)� and if S is a sphere of radius R centered at the origin, thenZ Z Z
S

f (x; y; z) dV = 4�

Z R

0

f (�) �2 d�
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