Part 4: Moments and Centers of Mass

If a solid S has a mass density of m( x,y,z) , then its first moments are defined to be
Myz =   xm( x,y,z) dV,    Mxz ym( x,y,z) dV 
Mxy  zm( x,y,z) dV
Since the mass of S is given by
M m( x,y,z) dV
the moments allow us to generalize the concept of center of mass to arbitrary solids. In particular, the center of mass of a solid with mass density m( x,y,z) is defined to be the point in R3 with coordinates
x
 =   Myz
M
,   
y
 =   Mxz
M
,   
z
 =   Mxy
M

       

EXAMPLE 4    Find the center of mass of the mixture in example 3 -- i.e., of the styrofoam peanuts/machine parts mixture in the box [ 0,1] ×[ 0,1] ×[ 0,2]
with a mass density of a density of
m( x,y,z) = ( 9-z3)    kg
m3

Solution: The moments of the box in example 3 are given by


Myz
=
 x  m( x,y,z)dV = ó
õ
1

0 
ó
õ
1

0 
ó
õ
2

0 
( 9-z3) x dzdydx
Mxz
=
 y  m( x,y,z)dV = ó
õ
1

0 
ó
õ
1

0 
ó
õ
2

0 
( 9-z3) y dzdydx
Mxy
=
 z  m( x,y,z)dV = ó
õ
1

0 
ó
õ
1

0 
ó
õ
2

0 
( 9-z3) z dzdydx
Evaluating these integrals and computing the coordinates of the center of mass yields
Myz
=
7  kg·m,       
-
x
 
=  7
14
= 0.5  m
Mxz
=
7  kg·m,       
-
y
 
=  7
14
= 0.5  m
Mxy
=
11.6  kg·m,       
-
z
 
=  11.6
14
= 0.83  m
Thus, the center of mass is ( 0.5, 0.5, 0.83) .

That is, the settling of the heavier parts toward the bottom implies a lower center of mass than would have been expected if the parts and peanuts had remained uniformly mixed.    

The first moments of a solid W with a mass density m( x,y,z) are used to determine the center of mass of the solid.  Higher moments - moments with nonlinear expressions in x, y, and z are also important, as they are used to reveal other properties of a solid.   For example, the moments of inertia about the three coordinate axes are
Ix
=
( y2+z2) m( x,y,z)dV,      Iy =    ( x2+z2) m(x,y,z) dV
Iz
=
( x2+y2) m( x,y,z) dV
Moments of inertia are the rotational analogs of mass.  For example, the angular momentum of an object rotated about the z-axis is L = Iz w, where w is angular velocity.

EXAMPLE 8    What is the moment of inertia about the z-axis of the machine parts, styrofoam peanuts mixture in example 3, where the mass density is
m( x,y,z) = ( 9-z3)    kg
m3
for the solid [ 0,1] ×[ 0,1] ×[ 0,2] .
Solution: The moment of inertia about the z-axis is
Iz
=

[ 0,1] ×[ 0,1] ×[ 0,2]
   ( x2+y2) m( x,y,z) dV
=
ó
õ
1

0 
ó
õ
1

0 
ó
õ
2

0 
( x2+y2) (9-z3) dzdydx
=
ó
õ
1

0 
ó
õ
1

0 
( x2+y2) æ
è
9z-  z4
4
ö
ø
ê
ê
2

0 
dydx
=
ó
õ
1

0 
ó
õ
1

0 
17( x2+y2) dydx
=
17 ó
õ
1

0 
x2y+  y3
3
ê
ê
1

0 
dx
=
17 ó
õ
1

0 
æ
è
x2+  1
3
ö
ø
dx
=
17 æ
è
 2
3
ö
ø
  m2·kg