Exercises

Find and describe the image of the given region under the given transformation. Then compute the area of the image.
1.
T( u,v) = á 2u,4v ñ
2.
T( u,v) = á u+3,2v ñ
S = [ 0,1] × [ 0,1]
S = [0,1] × [ 0,1]
3.
T( u,v) = á u,2u+v ñ
4.
T( u,v) = á u-v,u+v ñ
S = [ 0,1] × [ 0,1]
S = [0,1] × [ 0,1]
5.
T( u,v) = á u2-v2,2uv ñ
6.
T( u,v) = á u-v,uv ñ
S = [ 0,1] × [ 0,1]
S = [0,1] × [ 0,1]
7.
T( u,v) = á 4ucos( v) ,3usin(v) ñ ,
8.
T( u,v) = á ucosh( v), usinh( v) ñ ,
S = [ 0,1] × [ 0,2p]
S = [0,1] × [ 0,1]

Use the given transformation to evaluate the given iterated integral.
9.
ó
õ
1

0 
ó
õ
2

0 
 2xy
x2+1
dydx
10.
ó
õ
1

0 
ó
õ
1

0 
xysin( y2) dydx
T( u,v) = á Öu,v ñ
T( u,v) = á u,Öv ñ
11.
ó
õ
1

0 
ó
õ
1

0 
excos( ex) dxdy
12.
ó
õ
1

0 
ó
õ
1

0 
cos( y) esin( y) dydx
T( u,v) = á ln( u) ,v ñ
T( u,v) = á u,sin-1( v) ñ
13.
ó
õ
1

0 
ó
õ
x

0 
cos( x2) dydx
14.
ó
õ
1

0 
ó
õ
1

x 
cos( y2) dydx
T( u,v) = á v,u ñ
T(u,v) = á v,u ñ


15.
ó
õ
2

1 
ó
õ
2x+3

2x+1 
   1
2y-4x
dydx
16.
ó
õ
1

0 
ó
õ
2x+1

2x 
 
y-2x
  dydx
T( u,v) = á u,2u+v ñ
T(u,v) = á u,2u+v ñ
17.
ó
õ
1

0 
ó
õ
y+1

y-1 
 sin( y-x) dxdy
18.
ó
õ
2

1 
ó
õ
y+1

y 
   dxdy
xy-y2
T( u,v) = á u+v,v ñ
T(u,v) = á u+v,v ñ
19.
ó
õ
1

0 
ó
õ
1

y 
 sin( π x2) dxdy
20.
ó
õ
1

0 
ó
õ
2x

x 
ex2dydx
T( u,v) = á u,uv ñ
T(u,v) = á u,uv ñ
21.
ó
õ
ó
õ


R 
Ö
xy
dA,
22.
  ó
õ
xy3
 dA,
T( u,v) =
 u
v
, uv
T( u,v) =
 u
v
,uv
R bounded by xy = 1, xy = 9
R bounded by xy = 1, xy = 9
y = x, y = 4x
y = x, y = 4x

Use the given transformation to transform the given iterated integral. Then reduce to a single integral and approximate numerically.
23.
ó
õ
1

0 
ó
õ
x

-x 
cos[ ( x-y) 2]dydx
24.
ó
õ
1

0 
ó
õ
x

-x 
cos[ ( x+y)2] dydx
T( u,v) = á v+u,v-u ñ
T(u,v) = á v+u,v-u ñ
25.
ó
õ
1

-1 
ó
õ
Ö
1-x2

0 

 sin(x2+y2)
x2+y2
dydx
26.
ó
õ
1

-1 
ó
õ
0.5 Ö
1-x2

0 

 sin( x2+4y2)
x2+4y2
dydx
T( u,v) = á vcos( u) ,vsin(u) ñ
T( u,v) = á 2vcos( u) ,vsin( u) ñ
27.
ó
õ
2

0 
ó
õ
1-y2/4

y2/4-1 
ln(16x2-8xy2+y4+1) dxdy 
28.
ó
õ
2

0 
ó
õ
1-y2/4

y2/4-1 
e16x2-8xy2+y4dxdy
T( u,v) = á u2-v2,2uv ñ
T( u,v) = á u2-v2,2uv ñ

           

29. Evaluate the following iterated integral in two ways:
ó
õ
1

0 
ó
õ
3

0 
2xcos( x2) dxdy

    1. By letting w = x2, dw = 2xdx and noting that x = 0 implies w = 0 while x = 3 implies w = 9.
    2. Using the coordinate transformation
      T( u,v) = á Öu,v ñ

30. Evaluate the following iterated integral in two ways:
ó
õ
1

0 
ó
õ
4

0 
Öxcos( Öx ) dxdy

    1. By letting w = Öx, dw = dx/( 2Öx) and noting that x = 0 implies w = 0 while x = 4 implies w = 2.
    2. Using the coordinate transformation
      T( u,v) = á u2, v ñ

31. In two different ways, we show that if g is a differentiable function, then
ó
õ
b

a 
ó
õ
g( d)

g( c)  
f(x,y) dydx = ó
õ
b

a 
ó
õ
d

c 
f( u,g( v)) g' ( v) dvdu

    1. By letting y = g( v) , dy = g' ( v) dv in the rightmost iterated integral.
    2. By considering the coordinate transformation T( u,v) = á u,g( v) ñ .

32. In two different ways, we show that if f is a differentiable function, then
ó
õ
f( b)

f( a)  
ó
õ
g( d)

g( c) 
f( x,y)dydx = ó
õ
b

a 
ó
õ
d

c 
f( f( u) ,g( v)) f ' ( u) g' ( v) dvdu

    1. By letting x = f( u) ,dx = f¢( u) du and y = g( v) , dy = g' ( v) dv in the rightmost iterated integral.
    2. By considering the coordinate transformation T( u,v) = á f( u) ,g( v) ñ

33. The parabolic coordinate system on the xy-plane is given by
T( u,v) = á u2-v2,2uv ñ
If T maps a region S in the uv-plane to a region R in the xy-plane, then what does the change of variable formula imply that
ó
õ
ó
õ


R 
f( x,y) dA
will become when integrated over S in the uv-coordinate system?

34. The tangent coordinate system on the xy-plane is given by
T( u,v) =  u
u2+v2
,  v
u2+v2

If T maps a region S in the uv-plane to a region R in the xy-plane, then what does the change of variable formula imply that
ó
õ
ó
õ


R 
f( x,y) dA
will become when integrated over S in the uv-coordinate system?

35. The elliptic coordinate system on the xy-plane is given by
T( u,v) = á cosh( u) cos( v), sinh( u) sin( v) ñ
If T maps a region S in the uv-plane to a region R in the xy-plane, then what does the change of variable formula imply that
ó
õ
ó
õ


R 
f( x,y) dA
will become when integrated over S in the uv-coordinate system?

36. The bipolar coordinate system on the xy-plane is given by
T( u,v) =
 sinh( v)
cosh(v) -cos( u)
,  sin( u)
cosh(v) -cos( u)
If T maps a region S in the uv-plane to a region R in the xy-plane, then what does the change of variable formula imply that
ó
õ
ó
õ


R 
f( x,y) dA
will become when integrated over S in the uv-coordinate system?

37. Write to Learn: The translation T( u,v) = á u+a,v+b ñ translates a region S in the uv-plane to a region R in the xy-plane which is translated a units horizontally and b units vertically. Write a short essay which uses the change of coordinate formula to show that the area of R is the same as the area of S?

38. Write to Learn: A rotation T( u,v) = á cos( q) u+sin( q)v,-sin( q) u+cos( q) v ñ maps a region S in the uv-plane to a region R in the xy-plane which is rotated about the origin through an angle q. Write a short essay which uses the change of coordinate formula to show that the area of R is the same as the area of S?