Part 2: Volume

If f( x,y) ³ 0 on [ a,b] ×[c,d] , then f( rj,tk) DxjDyk is the volume of a "box" over a rectangle determined by partitions of [a,b] and [c,d], respectively.

 
click on image to change view

Consequently, the Riemann sum is an approximation of the volume of the solid under z = f( x,y) and over the rectangle [a,b] ×[ c,d] . 


click on image to change view

Thus, if f( x,y) ³ 0 over R, then the volume of the solid below z = f( x,y) and above R is
V = R   f( x,y) dA
It follows from the previous section that if R is a type I region bounded by x = a, x = b, y = h( x) , y = g( x) , then
 

R

f( x,y) dA = ó
õ
b

a 
ó
õ
g(x)

h( x)  
f( x,y) dydx
and if R is a type II region bounded by y = c, y = d, x = q( y) , x = p( y) , then
R   f( x,y) dA = ó
õ
d

c 
ó
õ
p(y)

q( y)  
f( x,y) dxdy

       

EXAMPLE 2    Find the volume of the region below z = x2y and over the region
R:
x = 0
y = x
x = 1
y = 1
Solution: Since the region is a type I region, we obtain
V
=
R  x2y  dA = ó
õ
1

0 
ó
õ
1

x 
x2y  dydx
=
ó
õ
1

0 
 x2y2
2
ê
ê
1

x 
dx
=
ó
õ
1

0 
æ
è
 x2
2
-  x4
2
ö
ø
dx
=
 1
15

In general, if f( x,y) ³ g( x,y) over a region R,

then the volume of the solid between z = f( x,y) and z = g(x,y) over R is

V = R  [ f( x,y) -g( x,y) ] dA
(5)
If R is type I or type II, then (5) can be evaluated by reducing to either a type I or a type II integral, respectively.     

EXAMPLE 3    Find the volume of the solid between z = x+y and z = x-y over the region
R:
y = 0
x = y2
y = 1
x = y
Solution: According to (5), the volume of the solid is
V = R  ( ( x+y) -( x-y) )dA = R  2y dA
which transforms into the type II iterated integral
V = ó
õ
1

0 
ó
õ
y

y2 
2y  dxdy
Evaluating the inside integral results in
V = ó
õ
1

0 
2y x
y
y2
dy = ó
õ
1

0 
( 2y·y-2y·y2) dy
It then follows that
V = ó
õ
1

0 
( 2y2-2y3) dy =  1
6

       

       

Check your Reading: What type of region is the region R given in example 3?