
Iterated Integrals

Type I Integrals
In this section, we begin the study of integrals over regions in the plane. To

do so, however, requires that we examine the important idea of iterated integrals,
in which inde�nite integrals are the integrand of a de�nite integral.
To begin with, we de�ne a type I iterated integral to be an integral of the

form Z b

a

Z q(x)

p(x)

f (x; y) dy dx

To evaluate a type I integral, we �rst evaluate the inner integralZ q(x)

p(x)

f (x; y) dy

treating x as a constant. We then evaluate the result with respect to x:Z b

a

Z q(x)

p(x)

f (x; y) dy dx =

Z b

a

"Z q(x)

p(x)

f (x; y) dy

#
dx

EXAMPLE 1 Evaluate the type I integralZ 1

0

Z x

0

�
xy2 + 1

�
dydx

Solution: To begin with, we integrate with respect to y:Z x

0

�
xy2 + 1

�
dy =

�
x
y3

3
+ y

�����x
0

=

�
x
x3

3
+ x

�
�
�
x
03

3
+ 0

�
=

1

3
x4 + x

As a result, we haveZ 1

0

Z x

0

�
xy2 + 1

�
dydx =

Z 1

0

�
1

3
x4 + x

�
dx

=
1

3

x4

4
+
x2

2

����1
0

=
1

12
+
1

2

=
7

12
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Often we evaluate the innermost integral inside the integrand of the outer inte-
gral rather than writing the integrations separately.

EXAMPLE 2 Evaluate the type I integralZ 2

0

Z x

1

x2ydydx

Solution: We �rst evaluate the inner integral:Z 2

0

Z x

1

x2ydydx =

Z 2

0

�Z x

1

x2ydy

�
dx

=

Z 2

0

�
x2
y2

2

����x
1

�
dx

=

Z 2

0

�
x2
x2

2
� x2 1

2

�
dx

=

Z 2

0

�
x4

2
� x

2

2

�
dx

=
28

15

Check your Reading: Why is 15 the denominator of the result in example 2?

Type II Integrals

Similarly, we de�ne a type II integral to be an iterated integral of the formZ d

c

Z v(y)

u(y)

f (x; y) dxdy

It is evaluated by considering y to be constant in the innermost integral, and
then integrating the result with respect to y.

EXAMPLE 3 Evaluate the type II integralZ 1

0

Z y

y2
(x+ y) dxdy
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Solution: We treat y as a constant in the innermost integral:Z 1

0

Z y

y2
(x� y) dxdy =

Z 1

0

�Z y

y2
(2x� y) dx

�
dy

=

Z 1

0

h
x2 � xy

��y
y2

i
dy

=

Z 1

0

h�
y2 � y2

�
�
��
y2
�2 � y2y�i dy

=

Z 1

0

�
y4 � y3

�
dy

=
�1
20

EXAMPLE 4 Evaluate the type II integralZ �

0

Z y

0

sin (y) dxdy

Solution: Since we treat y as a constant in the innermost integral,
the function sin (y) can be considered constant andZ �

0

Z y

0

sin (y) dxdy =

Z �

0

�
sin (y)

Z y

0

dx

�
dy

=

Z �

0

[y sin (y)] dy

We now use integration by parts with u = y and dv = sin (y) dy to
obtain

u = y dv = sin (y) dy
du = dy v = � cos (y)

Z �

0

[y sin (y)] dy = �y cos (y)j�0+
Z �

0

cos (y) dy

As a result, we haveZ �

0

Z y

0

sin (y) dxdy = �� cos (�) = �

Check your Reading: Why can we write
R y
0
sin (y) dx as sin (y)

R y
0
dx?

Volumes of Solids over Type I Regions

3



Let g; h be continuous on [a; b] and supppose that g (x) � h (x) for x in [a; b].
If R is a region in the xy-plane which is bounded by the curves x = a; x = b;
y = g (x), and y = h (x),

then R is said to be a type I region. Let�s �nd the volume of the solid between
the graph of f (x; y) and the xy-plane over a type I region R when f (x; y) � 0:

To do so, let�s notice that if the solid is sliced with a plane parallel to the
xz-plane, then its area is

A (x) =

Z h(x)

g(x)

f (x; y) dy
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It follows that if fxj ; tjg , j = 1; : : : ; n, is a tagged partition of [a; b] ; then the
volume of the solid under the graph of f (x; y) and over the region R is

V �
nX
j=1

A (tj)�xj

5



A limit of such simple function approximations yields the volumes by slicing
formula

V =

Z b

a

A (x) dx
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which is illustrated below:

After combining this with the de�nition of A (x) ; the result is the iterated
integral

V =

Z b

a

"Z h(x)

g(x)

f (x; y) dy

#
dx (1)

EXAMPLE 5 Find the volume of the solid under the graph of
f (x; y) = 2� x2 � y2 over the type I region

x = 0 y = 0
x = 1 y = x

Solution: According to (1), the volume of the solid is

V =

Z 1

0

�Z x

0

�
2� x2 � y2

�
dy

�
dx
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We evaluate the resulting type I iterated integral by �rst evaluating
the innermost integral:d

V =

Z 1

0

�
2y � x2y � y

3

3

����x
0

�
dx

=

Z 1

0

�
2x� 4

3
x3
�
dx

=
2

3

Check your Reading: Why is 2�x2�y2 non-negative over the region bounded
by x = 0; x = 1; y = 0; y = x? Explain.

Volumes of Solids over Type II Regions
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Similarly, if p (y) � q (y) for y in [c; d], then the region R in the xy-plane bounded
by the curves y = c; y = d; x = p (y), and x = q (y),

is said to be a type II region. Correspondingly, if f (x; y) � 0 for all (x; y) in a
type II region R; then the volume of the solid under z = f (x; y) and over the
region R is

V =

Z d

c

Z q(y)

p(y)

f (x; y) dxdy (2)

EXAMPLE 6 Find the volume of the solid under the graph of
f (x; y) = x2 + y2 over the type II region

y = 0 x = y2

y = 1 x = y

Solution: To do so, we use (2) to see that

V =

Z 1

0

Z y

y2

�
x2 + y2

�
dxdy

Evaluating the innermost integral leads to

V =

Z 1

0

"
x3

3
+ xy2

����y
y2

#
dy

=

Z 1

0

�
4

3
y3 � 1

3
y6 � y4

�
dy

=
3

35

Finally, let us note that unbounded regions can lead to convergent improper
integrals. Indeed, unbounded solids can have a �nite volume.
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EXAMPLE 7 Find the volume of the solid under the graph of
f (x; y) = e�x�y over the �rst quadrant.

Solution: In the �rst quadrant, x is in (0;1) and y is in (0;1) :
Thus, (2) implies that

V =

Z 1

0

Z 1

0

e�x�ydydx

The inner integral is evaluated as an improper integral

V =

Z 1

0

lim
R!1

Z R

0

e�x�ydydx

=

Z 1

0

lim
R!1

�
e�x�0 � e�x�R

�
dx

=

Z 1

0

e�xdx

The resulting integral is also evaluated as an improper integral, lead-
ing to

V = lim
S!1

Z S

0

e�xdx = lim
S!1

�
e0 � e�R

�
= 1

Exercises
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Identify each integral as either type I or type II and evaluate:

1.
R 1
0

R 1
0
(x+ y) dydx 2.

R 2
0

R 3
1
x2y dydx

3.
R 2
0

R 3
0
xy dxdy 4.

R 1
0

R 3
0
dydx

5.
R 1
0

R x
0

�
x2 + y2

�
dydx 6.

R �
0

R sin(x)
0

dydx
7.

R �
0

R �
0
cos (x) dydx 8.

R �
0

R x
0
sin (y) dydx

9.
R �=4
0

R sec(x) tan(x)
0

dydx 10.
R 2�
0

R sin(x)
0

ydydx

11.
R �
0

R x
0
sin (x) dydx 12.

R 1
0

R y
0
ex+ydxdy

13.
R �
0

R exp(x)
0

xdydx 14.
R 1
0

R y
0
sin
�
y2
�
dxdy

15.
R 2
0

R y
0
ln
�
y2 + 1

�
dxdy 16.

R 3
0

R 1
x
eydxdy

17.
R 2
1

R x2
0

x
x2+y2 dydx 18.

R 2
1

R x
0

1
x2+y2 dydx

Sketch the region R and determine its type. Then �nd the volume of the solid
under z = f (x; y) and over the given region.

19. f (x; y) = x2 + y2 20. f (x; y) = 3
R: y = 0; y = 1 R: x = 0; x = 2

x = 0; x = 1 y = 0; y = 4
21. f (x; y) = 3x+ 2y 22. f (x; y) = 6x+ y

R: x = 0; x = 1 R: x = 2; x = 3
y = 0; y = x2 y = 0; y = ex

23. f (x; y) = xy 24. f (x; y) = y2

R: y = 0; y = 1 R: y = 0; y = �=2
x = �y; x = y x = 0; x = sin (y)

25. f (x; y) = ex+y 26. f (x; y) = 9� x2 � y2
R: y = 0; y = 1 R: x = 1; x = 3

x = 0; x = 1� y y = x; y = x2

The following regions are unbounded. Sketch the region R and determine its
type. Then �nd the volume of the solid under z = f (x; y) and over the given
region.

27. f (x; y) = 1
x2y2 28. f (x; y) = 1

x2+y2

R: x in (1;1) ; y in (1;1) R: x = 0; x = 2
29. f (x; y) = x�2e�y 30. f (x; y) = 1

R: x in (1;1) R: x in (0;1)
y = 0; y = x�2 y = x� e�x; y = x+ e�x

-

31. A regular cone with a height h and a base with radius R is positioned
so that its axis is horizontal. Find the area A (x) of a vertical cross-section of
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the cone perpendicular to the axis as a function of x in [0; h] :

What is the volume of a regular cone with height h and a base with radius R?
32. A hemisphere with radius R is positioned so that its axis is horizontal.

Find the area A (x) of a vertical cross-section of the cone perpendicular to the
axis as a function of x in [0; R] :

What is the volume of a hemisphere with radius R?
33. A regular pyramid has height h and a square base with each side a

length s: It is positioned as shown in the �gure below:
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Find the area A (x) of a cross-section at x. What is the volume of the pyramid?
34. The Great Pyramid is 4810 tall and has a square base which is 7560 wide

on each side.

What is the volume of the Great Pyramid? (hint: see problem 33).
35. Explain why the area of a type I region can be written in the form

A =

Z b

a

Z h(x)

g(x)

dydx

36. Explain why the area of a type II region can be written in the form

A =

Z d

c

Z q(y)

p(y)

dxdy

37. Explain why if a; b; c; and d are all constant, thenZ b

a

Z d

c

f (x; y) dydx =

Z d

c

Z b

a

f (x; y) dxdy

when both iterated integrals exist.
38. Show that if a; b; c; and d are constant, thenZ b

a

Z d

c

f (x) g (y) dydx =

"Z b

a

f (x) dx

#"Z d

c

g (y) dy

#

39. Use properties of the integral to show thatZ b

a

Z q(x)

p(x)

[f (x; y) + g (x; y)] dy dx =

Z b

a

Z q(x)

p(x)

f (x; y) dy dx+

Z b

a

Z q(x)

p(x)

g (x; y) dy dx
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40. Use properties of the integral to show thatZ b

a

Z q(x)

p(x)

[f (x; y) + g (x; y)] dy dx =

Z b

a

Z q(x)

p(x)

f (x; y) dy dx+

Z b

a

Z q(x)

p(x)

g (x; y) dy dx

41. Show that if f is di¤erentiable on (a; b), then for all c in (a; b) we have

f (c) (b� a) +
Z b

a

f (x) dx =

Z b

a

Z x

c

f 0 (u) dudx

42. Show that if f is di¤erentiable and if f (0) = 0; thenZ b

a

f (x) dx =

Z b

a

Z 1

0

f 0 (ux) dudx
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