Iterated Integrals

Type I Integrals

In this section, we begin the study of integrals over regions in the plane. To
do so, however, requires that we examine the important idea of iterated integrals,
in which indefinite integrals are the integrand of a definite integral.

To begin with, we define a type I iterated integral to be an integral of the

form

treating = as a constant. We then evaluate the result with respect to x:
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To evaluate a type I integral, we first evaluate the inner integral
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Evaluate the type I integral
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Solution: To begin with, we integrate with respect to y:
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As a result, we have
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Often we evaluate the innermost integral inside the integrand of the outer inte-
gral rather than writing the integrations separately.

EXAMPLE 2 Evaluate the type I integral

2 T
/ / z?ydydx
o J1
Solution: We first evaluate the inner integral:
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Check your Reading: Why is 15 the denominator of the result in example 27

Type II Integrals

Similarly, we define a type II integral to be an iterated integral of the form

d ro(y)
/ / f (z,y) dedy
c Ju(y)

It is evaluated by considering y to be constant in the innermost integral, and
then integrating the result with respect to y.

EXAMPLE 3 Evaluate the type II integral

1 ry
/ / (z +y) dedy
0 Jy2



Solution: We treat y as a constant in the innermost integral:
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EXAMPLE 4 Evaluate the type II integral

T oy
/ / sin (y) dzdy
o Jo

Solution: Since we treat y as a constant in the innermost integral,
the function sin (y) can be considered constant and

/Oﬁ/oysin(y)da:dy _ /Oﬂ {Sin(y)/oydx] dy

/0 ' lysin (y)] dy

We now use integration by parts with u = y and dv = sin (y) dy to
obtain

u=y dv=sin(y)dy o o ~ "
du=dy v=—cos(y) | lysin(y)ldy = —ycos()lg+ | cos(y) dy

As a result, we have

Ty
/ / sin (y) dedy = —mcos (7)) =«
o Jo

Check your Reading: Why can we write [ sin (y) dz as sin (y) [} da?

Volumes of Solids over Type I Regions




Let g, h be continuous on [a,b] and supppose that g () < h(z) for z in [a,b)].
If R is a region in the zy-plane which is bounded by the curves z = a, z = b,

y=g(z), and y = h(z),

P=ELX)

then R is said to be a type I region. Let’s find the volume of the solid between
the graph of f (x,y) and the zy-plane over a type I region R when f (z,y) > 0.

To do so, let’s notice that if the solid is sliced with a plane parallel to the
zz-plane, then its area is



It follows that if {z;,¢;} , 7 =1,...,n, is a tagged partition of [a,b], then the
volume of the solid under the graph of f (z,y) and over the region R is

V= Z A(t;) Ax;
j=1



A limit of such simple function approximations yields the volumes by slicing
formula

Vz/abA(x)dm



which is illustrated below:

After combining this with the definition of A (x), the result is the iterated

integral
b h(x)
v- | V() f(x,y)dy] d 1)
a g(x

EXAMPLE 5 Find the volume of the solid under the graph of
f(z,y) = 2 — 2% — 4 over the type I region

r=1

Solution: According to (1), the volume of the solid is

Vz/o1 [/Ox(Z—xQ—yQ)dy dx



We evaluate the resulting type I iterated integral by first evaluating
the innermost integral:d
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Check your Reading: Why is 2—x? —4? non-negative over the region bounded
byz=0,z=1,y=0, y=2x? Explain.

Volumes of Solids over Type II Regions




Similarly, if p (y) < ¢ (y) for y in [c, d], then the region R in the zy-plane bounded
by the curves y = ¢, y =d, z = p(y), and = = ¢ (y),

a1

) r=p(y)

is said to be a type II region. Correspondingly, if f (x,y) > 0 for all (x,y) in a
type II region R, then the volume of the solid under z = f (x,y) and over the

region R is
d ra(y)
V’==][ J/ f(z,y) dzdy (2)
c Jp(y)

EXAMPLE 6 Find the volume of the solid under the graph of
f (z,y) = 2% + 3?2 over the type II region

y=0 xz=1>
y=1 z=y

Solution: To do so, we use (2) to see that

1 ry
V= / / (z° + y?) dady
0 Jy2

Evaluating the innermost integral leads to
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Finally, let us note that unbounded regions can lead to convergent improper
integrals. Indeed, unbounded solids can have a finite volume.



EXAMPLE 7 Find the volume of the solid under the graph of
f(xz,y) = e 7Y over the first quadrant.

Solution: In the first quadrant, = is in (0,00) and y is in (0, 0).
Thus, (2) implies that

Vz/ / e " Vdydx
o Jo

The inner integral is evaluated as an improper integral

e’} R
/ lim/ e " Ydydx
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The resulting integral is also evaluated as an improper integral, lead-
ing to
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Exercises
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Identify each integral as either type I or type II and evaluate:

1. fo fo (z +y) dydx 2. fof %y dydx

3. fo fo zy dxdy 4. fo o dydw

5. fo fo (22 +y ) dydx 6. J, fsm(m d dx

7. Jo Jo cos(z)dydx 8. Jy Jo sin(y)dyda
0. Tr/4 fbec(x)tan(x)d i 10. 02rr 0sm(ac) ydyda
11. fo [y sin (z) dydz 12. [ [Yertvdady
13. fo CXP(I) xdydz 14. f03 fo sin (y?) dady

15. fo fo In (y* + 1) dedy 16. f eYdxdy

2
17, [P fy iadyda 18. [ [7 st adyds

Sketch the region R and determine its type. Then find the volume of the solid
under z = f (x,y) and over the given region.

19. [ (z,y) = 2%+ 20. f(z,y) =3
R: y=0,y=1 R z=0,z=2
r=0,z=1 y=0,y=4
21. fz,y) =3z +2y 22. flz,y)=6x+y
R: z=0,z=1 R xz=22=3
y=0,y=a’ y=0,y=e"
23. f(z,y) =2y 24. flzy) =y°
R y=0,y=1 R y=0,y=m7/2
rT=—-y,x=y x =0, x =sin(y)
25. f(zy) =e*tY 26. f(z,y)=9—2% -4
R y=0,y=1 R z=1,z=3
r=0,z=1-y y=umx,y=x>

The following regions are unbounded. Sketch the region R and determine its
type. Then find the volume of the solid under z = f(x,y) and over the given
region.

27. flz,y) = z2ly2 28. flz,y) = ﬁi}ry?
R: zin (1,00), y in (1,00) R: x=0,2=2
29. f(z,y) =a"2e7Y 30. fzy) =1
R: zin (1,00) R: zin (0,00)
y=0,y=a"7 y=z—e " y=x+e”

31. A regular cone with a height A and a base with radius R is positioned
so that its axis is horizontal. Find the area A (z) of a vertical cross-section of
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the cone perpendicular to the axis as a function of = in [0, h] .

R (M

What is the volume of a regular cone with height h and a base with radius R?

32. A hemisphere with radius R is positioned so that its axis is horizontal.
Find the area A (x) of a vertical cross-section of the cone perpendicular to the
axis as a function of x in [0, R].

Hemisphere

-~

What is the volume of a hemisphere with radius R?
33. A regular pyramid has height h and a square base with each side a
length s. It is positioned as shown in the figure below:
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Find the area A (x) of a cross-section at z. What is the volume of the pyramid?
34. The Great Pyramid is 481’ tall and has a square base which is 756" wide
on each side.

481"

7‘5-‘6';

What is the volume of the Great Pyramid? (hint: see problem 33).
35. Explain why the area of a type I region can be written in the form

b ph(z)
A= / / dydx
a Jg(x)

36. Explain why the area of a type II region can be written in the form

q(y)
/ / dxdy
p(y

37. Explain why if a, b, ¢, and d are all constant, then

/ab/cdf(a:,y)dydx=/Cd/abf(x,y>dxdy

when both iterated integrals exist.
38. Show that if a, b, ¢, and d are constant, then

/ab/cdf(x)g@)dydx: [/abf(x)dx] [/Cdg@)dy]

39. Use properties of the integral to show that

‘I(I) q(x)
// flx,y)+g(z,y) dydx—// xydydw—i—// g (z,y)dydx
p
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40. Use properties of the integral to show that

Q(I) q(r) b q(x)
/ / flx,y)+g(z,y) dyda:—/ / (z,y d;ydx—i—/ / g (z,y) dy dx
p(z) p(x) a Jp(x)

41. Show that if f is differentiable on (a,b), then for all ¢ in (a,b) we have

c (b—a)—l—/abf(m)dx:/ab/cwf’(u)dudm

42. Show that if f is differentiable and if f (0) = 0, then

/abf(x)dm:/ab/olf’(um)dudx

14



