Surface Normals and Tangent Planes

Normal and Tangent Planes to Level Surfaces

Because the equation of a plane requires a point and a normal vector to the plane, finding the equation of a tangent plane to a surface at a given point requires the calculation of a *surface normal vector*. In this section, we explore the concept of a normal vector to a surface and its use in finding equations of tangent planes.

To begin with, a level surface U(x, y, z) = k is said to be *smooth* if the gradient $\nabla U = \langle U_x, U_y, U_z \rangle$ is continuous and non-zero at any point on the surface. Equivalently, we often write

$$\nabla U = U_x \mathbf{e}_x + U_y \mathbf{e}_y + U_z \mathbf{e}_z$$

where $\mathbf{e}_x = \langle 1, 0, 0 \rangle$, $\mathbf{e}_y = \langle 0, 1, 0 \rangle$, and $\mathbf{e}_z = \langle 0, 0, 1 \rangle$.

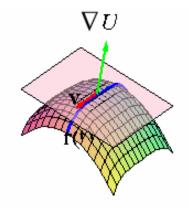
Suppose now that $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ lies on a smooth surface U(x, y, z) = k. Applying the derivative with respect to t to both sides of the equation of the level surface yields

$$\frac{dU}{dt} = \frac{d}{dt}k$$

Since k is a constant, the chain rule implies that

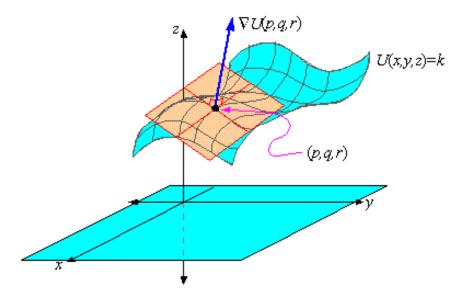
$$\nabla U \cdot \mathbf{v} = 0$$

where $\mathbf{v} = \langle x'(t), y'(t), z'(t) \rangle$. However, \mathbf{v} is tangent to the surface because it is tangent to a curve on the surface, which implies that ∇U is orthogonal to each tangent vector \mathbf{v} at a given point on the surface.



That is, $\nabla U(p,q,r)$ at a given point (p,q,r) is normal to the tangent plane to

the surface U(x, y, z) = k at the point (p, q, r).



We thus say that the gradient ∇U is *normal* to the surface U(x, y, z) = k at each point on the surface.

 $EXAMPLE\ 1$ $\,$ Find the equation of the tangent plane to the hyperboloid in 2 sheets

$$x^2 - y^2 - z^2 = 4$$

at the point (3, 2, 1).

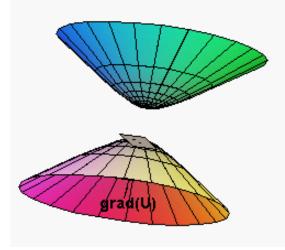
Solution: To begin with, we identify $U(x, y, z) = x^2 - y^2 - z^2$, so that its gradient is

$$\nabla U = \langle 2x, -2y, -2z \rangle$$

At the point (2,3,1), the vector $\mathbf{n} = \nabla U(3,2,1) = \langle 6,-4,-2 \rangle$ is normal to the surface, so that the equation of the tangent plane is

$$6(x-3) - 4(y-2) - 2(z-1) = 0$$

which simplifies to the equation z = 3x - 2y - 4.



EXAMPLE 2 Find the equation of the tangent plane to the right $circular \ cone$ 2

$$x^2 + y^2 = z^2$$

at the point (0.6, 0.8, 1).

Solution: Since the equation of the surface can be written $x^2 + y^2 - z^2 = 0$, we let

$$U(x, y, z) = x^2 + y^2 - z^2$$

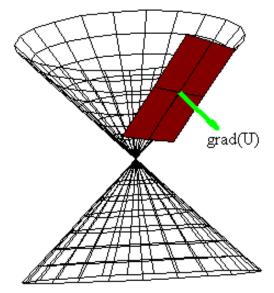
As a result, the gradient of U is

$$\nabla U = \langle 2x, 2y, -2z \rangle$$

At the point (0.6, 0.8, 1), the vector $\nabla U(0.6, 0.8, 1) = (1.2, 1.6, 2)$ is normal to the surface, so the equation of the tangent plane is

$$1.2(x - 0.6) + 1.6(y - 0.8) - 2(z - 1) = 0$$

Solving for z yields z = 0.6x + 0.8y, which is shown in the figure



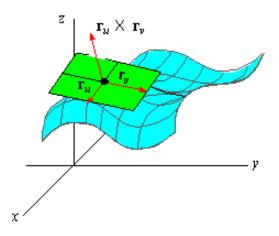
Check your Reading: What *degenerate conic section* is formed by the intersection of the cone with the plane in example 2?

Normal and Tangent Planes to Parametric Surfaces

If $\mathbf{r}(u, v)$ is a regular parametrization of a surface, then the vector $\mathbf{r}_u \times \mathbf{r}_v$ is perpendicular to both \mathbf{r}_u and \mathbf{r}_v . Thus, $\mathbf{r}_u \times \mathbf{r}_v$ must also be perpendicular to

below:

the tangent plane spanned by \mathbf{r}_u and \mathbf{r}_v .



We say that the cross product $\mathbf{r}_u \times \mathbf{r}_v$ is *normal to the surface*. Similar to the first section, the vector $\mathbf{r}_u \times \mathbf{r}_v$ can be used as the normal vector in determining the equation of the tangent plane at a point of the form $(x_1, y_1, z_1) = \mathbf{r}(p, q)$.

EXAMPLE 3 Find the equation of the tangent plane to the torus

$$\mathbf{r} = \langle (2 + \sin(v)) \cos(u), (2 + \sin(v)) \sin(u), \cos(v) \rangle$$

at the point $\mathbf{r}(0,0)$.

Solution: The vectors \mathbf{r}_u and \mathbf{r}_v are given by

$$\mathbf{r}_{u} = \langle -(2+\sin{(v)})\sin{(u)}, (2+\sin{(v)})\cos{(u)}, 0 \rangle$$

$$\mathbf{r}_{v} = \langle \cos{(v)}\cos{(u)}, \cos{(v)}\sin{(u)}, -\sin{(v)} \rangle$$

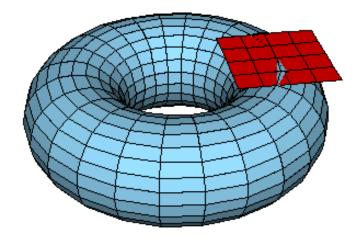
so that $\mathbf{r}_{u}(0,0) = \langle 0,2,0 \rangle = 2\mathbf{j}$ and $\mathbf{r}_{v}(0,0) = \langle 1,0,0 \rangle = \mathbf{i}$. Thus, the normal to the plane is

$$\mathbf{n} = \mathbf{r}_{u}(0,0) \times \mathbf{r}_{v}(0,0) = 2\mathbf{j} \times \mathbf{i} = -2\mathbf{k}$$

That is, $\mathbf{n} = \langle 0, 0, -2 \rangle$. Since $\mathbf{r}(0, 0) = (2, 0, 1)$, the equation of the tangent plane at that point is

$$0(x-2) + 0(y-0) - 2(z-1) = 0$$

which reduces to z = 1.



If $\mathbf{r}(u, v)$ is the parameterization of a surface, then the *surface unit normal* is defined $\mathbf{r} \prec \mathbf{r}$

$$\mathbf{n} = rac{\mathbf{r}_u imes \mathbf{r}_v}{||\mathbf{r}_u imes \mathbf{r}_v||}$$

The vector \mathbf{n} is also normal to the surface.

surf3

Moreover, **n** is often considered to be a function $\mathbf{n}(u, v)$ which assigns a normal unit vector to each point on the surface.

EXAMPLE 4 Find the surface unit normal and the equation of the tangent plane to the cylinder

$$\mathbf{r}(u,v) = \langle 3\cos(u), 3\sin(u), v \rangle$$

at $\mathbf{r}(\pi, 2) = (-3, 0, 2)$.

Solution: Since $\mathbf{r}_u = \langle -3\sin(u), 3\cos(u), 0 \rangle = -3\sin(u)\mathbf{i} + 3\cos(u)\mathbf{j}$ and since $\mathbf{r}_v = \langle 0, 0, 1 \rangle = \mathbf{k}$, their cross product is

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = (-3\sin(u)\mathbf{i} + 3\cos(u)\mathbf{j}) \times \mathbf{k}$$
$$= -3\sin(u)\mathbf{i} \times \mathbf{k} + 3\cos(u)\mathbf{j} \times \mathbf{k}$$
$$= 3\sin(u)\mathbf{j} + 3\cos(u)\mathbf{i}$$

It is easy to show that $||\mathbf{r}_u \times \mathbf{r}_v|| = 3$, so that the *unit surface normal* is

$$\mathbf{n} = \frac{\mathbf{r}_u \times \mathbf{r}_v}{||\mathbf{r}_u \times \mathbf{r}_v||} = \cos(u)\,\mathbf{i} + \sin(u)\,\mathbf{j}$$

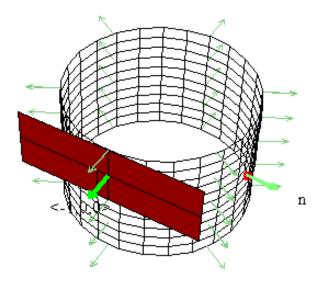
The tangent plane is the plane through (-3, 0, 2) with a normal of

 $\mathbf{n}(\pi, 2) = \cos(\pi) \mathbf{i} + \sin(\pi) \mathbf{j} = \langle -1, 0, 0 \rangle$

Thus, the equation of the tangent plane is

$$-1(x - 1) + 0(y - 0) + 0(z - 0) = 0$$

which reduces to x = -1.



Check Your Reading: Does the tangent plane in example 4 intersect the cylinder at only one point?

Tangents and Normals to Graphs of Functions

If f(x, y) is differentiable at (p, q), then linearization of f(x, y) at (p, q) leads to a tangent plane to z = f(x, y) at (p, q, f(p, q)) of

$$z = f(p,q) + f_x(p,q)(x-p) + f_y(p,q)(y-q)$$

This formula was developed using the total derivative.

However, we can also find the tangent plane to z = f(x, y) at (p, q, f(p, q)) by (a) considering the level surface z - f(x, y) = 0 or (b) considering the parameterization

$$\mathbf{r}\left(u,v\right) = \left\langle u,v,f\left(u,v\right)\right\rangle$$

at the point $\mathbf{r}(p,q)$. The result is the same for all 3 methods.

EXAMPLE 5 Find the equation of the tangent plane to $f(x, y) = x^2 - y^2$ at (1, 2) by (a) linearization of f(x, y) at (1, 2) (b) considering the surface f(x, y) - z = 0 at (1, 2, f(1, 2)) and (c) finding the tangent plane to a parameterization of the form

$$\mathbf{r}\left(u,v\right) = \left\langle u,v,f\left(u,v\right)\right\rangle$$

at $\mathbf{r}(1,2)$. The answer should be the same in all 3 cases.

Solution: (a) Since $f_x = 2x$ and $f_y = -2y$, we have $f_x(1,2) = 2$, and $f_y(1,2) = -4$. Thus, f(1,2) = -3 and correspondingly, the equation of the tangent plane is

$$z = f(p,q) + f_x(p,q)(x-p) + f_y(p,q)(y-q)$$

= -3 + 2(x-1) - 4(y-2)

which simplifies to z=2x-4y+3.~ (b) If $U\left(x,y,z\right)=z-\left(x^2-y^2\right),$ then

$$\nabla U = \langle -2x, 2y, 1 \rangle$$

Since f(1,2) = -3, the point of tangency is (1,2,-3) and

$$\nabla U\left(1,2,-3\right) = \langle -2,4,1 \rangle$$

Using $\nabla U(1, 2-3)$ as the normal, we obtain

$$-2(x-1) + 4(y-2) + 1(z-3) = 0$$

which upon solving for z yields z = 2x - 4y + 3. (c) If we let

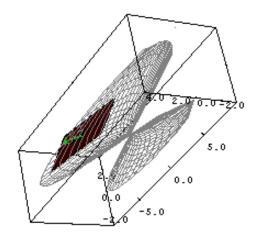
$$\mathbf{r}\left(u,v\right) = \left\langle u,v,u^2 - v^2\right\rangle$$

then $\mathbf{r}_u = \langle 1, 0, 2u \rangle$ and $\mathbf{r}_v = \langle 0, 1, -2v \rangle$. Thus,

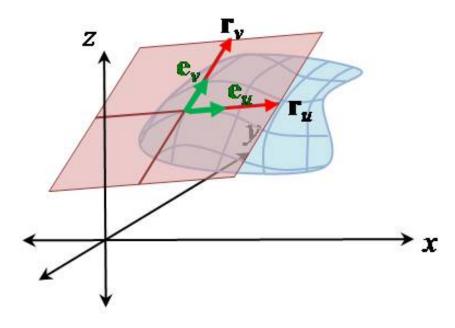
$$\mathbf{r}_{u}(1,2) = \langle 1,0,2 \rangle$$
 and $\mathbf{r}_{v}(1,2) = \langle 0,1,-4 \rangle$

and $\mathbf{r}_{u}(1,2) \times \mathbf{r}_{v}(1,2) = \langle -2,4,1 \rangle$, which is the same as $\nabla U(1,2,-3)$. Since $\mathbf{r}(1,2) = \langle 1,2,-3 \rangle$, the equation of the tangent plane is again

$$z = 2x - 4y + 3$$



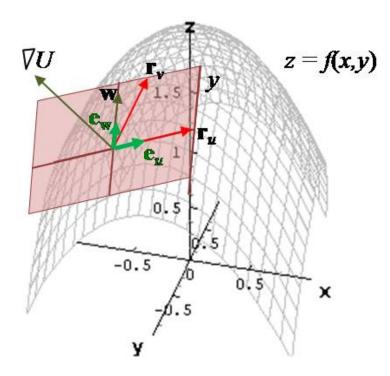
Of course, in applications only one approach is necessary. But there are times when one method is preferred over another. For example, there are applications when it is necessary to have an *orthonormal basis* for the tangent plane – i.e., two unit vectors in the plane that are perpendicular to each other. For an orthogonal parameterization $\mathbf{r}(u, v)$, we need only rescale \mathbf{r}_u and \mathbf{r}_v into unit vectors to obtain the desired orthonormal basis (such rescaling is known as *normalization*).



However, if $\mathbf{r}(u, v) = \langle u, v, f(u, v) \rangle$, then $\mathbf{r}_u \cdot \mathbf{r}_v = f_u f_v$, which typically is non-zero. However, if we let U(x, y, z) = z - f(x, y) where x = u, y = v, then the vector

$$\mathbf{w} = \nabla U imes \mathbf{r}_u$$

is in the tangent plane and is perpendicular to \mathbf{r}_u . Normalizing \mathbf{r}_u and \mathbf{w} results in an orthonormal basis for each tangent plane.



Conversely, proofs of theorems often begin with an assumption that a parametric or level surface implicitly defines z as a function z = f(x, y) in a coordinate patch of the surface containing a given point, thus allowing techniques and ideas as in chapter 2 (or we may assume that x is implicitly defined as a function of y, z, etcetera).

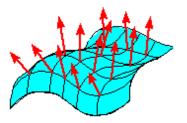
Check Your Reading: What is $\nabla U(1, 2, -3)$ if we let U(x, y, z) = f(x, y) - z in example 5?

Orientability and the Unit Surface Normal

Geometrically, saying that a level surface is *smooth* is equivalent to saying that it is *orientable*, where by orientable we mean that if we define the *unit surface* *normal* to be

$$\mathbf{n} = \frac{\nabla U}{||\nabla U||}$$

then \mathbf{n} varies continuously across the surface. Intuitively, orientable means that if the initial points of the *unit surface normals* \mathbf{n} are placed on the surface, then their terminal points are all on the same side of the surface.



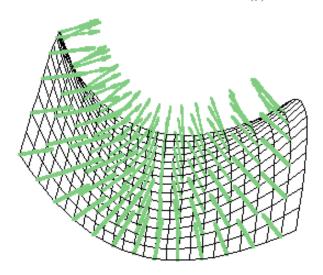
If a surface is closed (such as a sphere), then we assume its orientation to be with all normal vectors pointing toward the outside of the surface.

EXAMPLE 6 Explain why the surface $z = x^2 \cos(y)$ is orientable.

Solution: Since $z = x^2 \cos(y)$ is the same as $x^2 \cos(y) - z = 0$, we let $U(x, y, z) = z - x^2 \cos(y)$, so that

 $\nabla U = \left\langle -2x\cos\left(y\right), x^{2}\sin\left(y\right), 1 \right\rangle$

Since the z-component of ∇U is 1, it is not possible for ∇U to ever be 0. In fact, because the z-component of ∇U is positive, the normal vectors must all be *above* the surface $z = x^2 \cos(y)$.



It follows that a parametric surface is orientable if $\mathbf{n}(u, v)$ varies continuously across the surface *and* defines only one surface normal at each point on the surface.

EXAMPLE 7 Find the unit surface normal of the surface

$$\mathbf{r}(\theta, z) = \langle r \cos(\theta), r \sin(\theta), \cosh(r) \rangle$$

for θ in $[0, 2\pi]$ and r in [0, 1] is orientable. Explain why the surface is orientable.

Solution: Since $\mathbf{r}_r = \langle \cos(\theta), \sin(\theta), \sinh(r) \rangle$ and $\mathbf{r}_{\theta} = \langle -r\sin(\theta), r\cos(\theta), 0 \rangle$, their cross product is

$$\mathbf{r}_{r} \times \mathbf{r}_{\theta} = \langle \cos(\theta), \sin(\theta), \sinh(r) \rangle \times \langle -r\sin(\theta), r\cos(\theta), 0 \rangle$$
$$= r \langle -\sinh(r)\cos(\theta), -\sinh(r)\sin(\theta), 1 \rangle$$

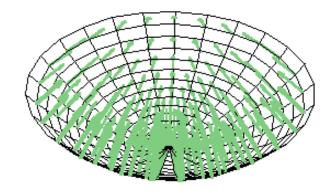
The square of the magnitude of their cross product is

$$\|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\|^{2} = r^{2} \left(\sinh^{2} (r) \cos^{2} (\theta) + \sinh^{2} (r) \sin^{2} (\theta) + 1\right)$$
$$= r^{2} \left(\sinh^{2} (r) + 1\right)$$
$$= r^{2} \cosh^{2} (r)$$

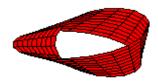
Thus, $\|\mathbf{r}_r \times \mathbf{r}_{\theta}\| = r \cosh(r)$, so that the surface unit normal is

$$\mathbf{n} = \frac{\mathbf{r}_r \times \mathbf{r}_\theta}{\|\mathbf{r}_r \times \mathbf{r}_\theta\|}$$
$$= \frac{r \langle -\sinh(r)\cos(\theta), -\sinh(r)\sin(\theta), 1 \rangle}{r \cosh(r)}$$
$$= \left\langle \frac{-\sinh(r)}{\cosh(r)}\cos(\theta), \frac{-\sinh(r)}{\cosh(r)}\sin(\theta), \frac{1}{\cosh(r)} \right\rangle$$
$$= \langle -\tanh(r)\cos(\theta), -\tanh(r)\sin(\theta), \operatorname{sech}(r) \rangle$$

Since $\mathbf{n}(r, \theta) = \langle -\tanh(r)\cos(\theta), -\tanh(r)\sin(\theta), \operatorname{sech}(r) \rangle$ is continuous fro all r and θ , and since $\mathbf{n}(r, \theta)$ is 2π -periodic, the surface

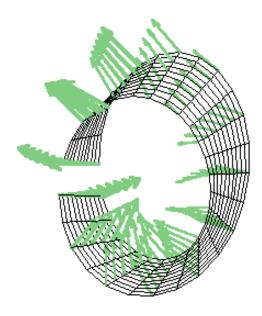


Not all surfaces can be oriented. For example, a Möbius strip, which can be formed by twisting a strip of paper one half turn and pasting the two ends together, cannot be oriented).



Indeed, if normal vectors are drawn on the surface, then the half-twist means that there will be a discontinuity in the assignment of unit normal vectors, or

equivalently, a "sudden reversal" of the direction of the normals.



Exercises

Find the equation of the tangent plane to the given surface at the given point.

Find the equation of the tangent plane to $\mathbf{r}(u, v)$ at the point $\mathbf{r}(p, q)$ for the given (p,q).

- 11. $\mathbf{r} = \langle v \sin(u), v \cos(u), v \rangle$ $(p,q) = (\pi/4,2)$
- 13. $\mathbf{r} = \langle \cos(u), \sin(u), v \rangle$ $(p,q) = (\pi/4,3)$
- 15. $\mathbf{r} = \langle v \sin(u), v \cos(u), uv \rangle$ $(p,q) = (\pi/3,1)$
- 17. $\mathbf{r} = \langle \sin(v) \sin(u), \cos(v) \sin(u), \cos(u) \rangle$ $(p,q) = (\pi/4, \pi/4)$

19.
$$\mathbf{r} = \langle e^v \sin(u), e^v \cos(u), e^{-v} \rangle$$

 $(p,q) = (\pi, 1)$

- 12. $\mathbf{r} = \langle v \cos(u), v \sin(u), v \rangle$ $(p,q) = (\pi/2,1)$
- 14. $\mathbf{r} = \langle \cos(u), \sin(u), v \rangle$ $(p,q) = (\pi/2,1)$

16.
$$\mathbf{r} = \langle v \sin(u), v^2, v \cos(u) \rangle$$

 $(p,q) = (\pi/4, 1)$

- 18. $\mathbf{r} = \langle \sin(v) \sin(u), \cos(v) \sin(u), \cos(u) \rangle$ $(p,q) = (\pi/3, \pi/4)$
- 20. $\mathbf{r} = \langle \sin(u) \cosh(v), \sin(u) \sinh(v), \cos(u) \rangle$ $(p,q) = (\pi, \ln 2)$

Find the tangent plane to the graph of f(x,y) at (p,q,f(p,q)) by (a) using methods from section 2-5, (b) considering the surface z - f(x, y) = 0, and (c) finding the tangent plane to a parameterization of the form

$$\mathbf{r}\left(u,v\right) = \left\langle u,v,f\left(u,v\right)\right\rangle$$

The answer should be the same in all 3 cases.

 $\begin{array}{ll} 21. & f\left(x,y\right)=x^2-y, \ \left(p,q\right)=(2,1) \\ 23. & f\left(x,y\right)=3x+2y+1, \ \left(p,q\right)=(0,0) \\ 25. & f\left(x,y\right)=xe^{xy}, \ \left(p,q\right)=(2,0) \end{array} \end{array} \begin{array}{ll} 22. & f\left(x,y\right)=x^2+y^2, \ \left(p,q\right)=(1,1) \\ 24. & f\left(x,y\right)=xy, \ \left(p,q\right)=(1,1) \\ 26. & f\left(x,y\right)=\ln\left(x^2+y^2\right), \ \left(p,q\right)=(1,1) \end{array}$

27. Is the surface $\mathbf{r}(u, v) = \langle v \sin(u), v \cos(u), v \rangle$, $u \operatorname{in}[0, 2\pi], v \operatorname{in}[1, 2],$ orientable? Explain.

28. Consider the surface parameterized by

$$\mathbf{r}(u,v) = \left\langle v \cos\left(\frac{u}{2}\right), \sin\left(u\right), v \sin\left(\frac{u}{2}\right) \right\rangle$$

for u in $[0, 2\pi]$ and v in [-0.3, 0.3]. Find \mathbf{r}_u and \mathbf{r}_v and then calculate

 $\mathbf{r}_{u}(0,v)$, $\mathbf{r}_{u}(2\pi,0)$, $\mathbf{r}_{v}(0,v)$, and $\mathbf{r}_{v}(2\pi,0)$

Use these to calculate

$$\mathbf{n}\left(0,v\right) = \frac{\mathbf{r}_{u}\left(0,v\right) \times \mathbf{r}_{v}\left(0,v\right)}{\left|\left|\mathbf{r}_{u}\left(0,v\right) \times \mathbf{r}_{v}\left(0,v\right)\right|\right|} \quad and \quad \mathbf{n}\left(2\pi,v\right) = \frac{\mathbf{r}_{u}\left(2\pi,v\right) \times \mathbf{r}_{v}\left(2\pi,v\right)}{\left|\left|\mathbf{r}_{u}\left(2\pi,v\right) \times \mathbf{r}_{v}\left(2\pi,v\right)\right|\right|}$$

Is $\mathbf{n}(0, v) = \mathbf{n}(2\pi, v)$? Is the surface orientable?

29. Find the equation of the tangent plane to the cone $x^2 + y^2 = z^2$ at (1,0,1) using (a) a level surface and (b) the parameterization

$$\mathbf{r}(u,v) = \langle v \cos(u), v \sin(u), v \rangle$$

at $\mathbf{r}(0,1)$. The answer should be the same in both cases.

30. Find the equation of the tangent plane to

$$\mathbf{r}(u,v) = \langle ue^v, ue^{-v}, u \rangle$$

at $\mathbf{r}(1,0)$. Then find the equation of the tangent plane again using a level surface representation of $\mathbf{r}(u,v)$. The answer should be the same in both cases.

31. Show that the equation of the tangent plane to an elliptic paraboloid

$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

at a point (m, n, p) on the elliptic paraboloid is of the form

$$\frac{z+p}{2c} = \frac{mx}{a^2} + \frac{ny}{b^2}$$

32. Find the equation of the tangent plane to $x^2 + y^2 = z^2$ at the point (m, n, p), and then show that it must pass through the line mx + ny = 0 in the *xy*-plane.

33. If (m, n, p) is a point on a sphere of radius R centered at the origin, what is the equation of the tangent plane to the sphere at (m, n, p)?

34. Show that the normal vector to a sphere of radius R at a point (m, n, p) is parallel to the radius vector $\langle m, n, p \rangle$. What does this say about the relationship between the radius vector $\langle m, n, p \rangle$ and any vector tangent to the sphere at (m, n, p)?

35. Show that any tangent plane to $z = x^2 - y^2$ intersects the surface in two perpendicular lines.

36. Show that any tangent plane to $x^2 + y^2 - z^2 = 1$ intersects the surface in two lines.

37. Determine the longitude θ_0 and latitude φ_0 of your present location. Assume that earth is a sphere with latitude-longitude parameterization of

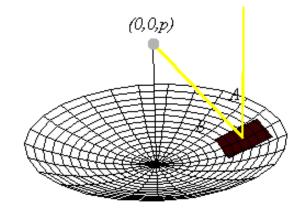
$$\mathbf{r}(\varphi,\theta) = \langle 3960\cos(\varphi)\cos(\theta), 3960\cos(\varphi)\sin(\theta), 3960\sin(\varphi) \rangle$$

What is the equation of the tangent plane to the earth at your location? (note: this problem assumes an xyz-coordinate system at the center of the earth with z-axis through the poles and x-axis at 0° longitude).

38. A parabolic mirror is in the shape of a paraboloid with equation

$$4pz = x^2 + y^2$$

where p is a number. Show that a vertical line through a point (a, b, c) forms the same angle with the tangent plane at (a, b, c) as does the line through (a, b, c) and (0, 0, p). (i.e., that a vertical ray of light is reflected by the paraboloid to the focus at (0, 0, p)).



39. Explain why if **n** denotes the surface normal of a surface $\mathbf{r}(u, v)$, then $\mathbf{n}(u, v)$ is a parameterization of a section of the unit sphere. What section of

the unit sphere is parameterized by the surface normal ${\bf n}$ to the right circular cylinder

$$\mathbf{r}(u,v) = \langle \cos(u), \sin(u), v \rangle$$

40. What section of the unit sphere is parameterized by the surface normal **n** to the surface

$$\mathbf{r}(u, v) = \langle v \cos(u), v \sin(u), \cosh(v) \rangle$$

for $v \ge 0$ and u in $[0, 2\pi]$. (see exercise 39).

41. Write to Learn: Write a short essay which explains why the tangent plane to a plane is the plane itself. In particular, demonstrate using a parametric representation of a plane

$$\mathbf{r}(u,v) = \langle a + mu + nv, b + pu + qv, c + su + tv \rangle$$

for constants a, b, c, m, n, p, q, s, and t, demonstrate using a level surface representation

$$\alpha (x - a) + \beta (y - b) + \gamma (z - c) = 0$$

for α , β , and γ constant, and also demonstrate using a functional form by solving for z when $\gamma \neq 0$.

42. Write to Learn: Suppose that two smooth surfaces F(x, y, z) = kand G(x, y, z) = l both contain the point (x_0, y_0, z_0) and that $\nabla F(x_0, y_0, z_0) = c\nabla G(x_0, y_0, z_0)$ for some number c. Write a short essay which explains why the two surfaces are tangent at (x_0, y_0, z_0) .