Curvilinear Coordinates

Cylindrical Coordinates

A 3-dimensional coordinate transformation is a mapping of the form
T (u,v,w) = {x (u,v,w),y (u,v,w), z (u,v,w))

Correspondingly, a 3-dimensional coordinate transformation 7" maps a solid 2
in the uvw-coordinate system to a solid T' (€2) in the zyz-coordinate system (and
similarly, T maps curves in uvw to curves in zyz, surfaces in uvw to surfaces in
zyz, and so on).
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In this section, we introduce and explore two of the more important 3-dimensional
coordinate transformations.

To begin with, the cylindrical coordinates of a point P are Cartesian co-
ordinates in which the z and y coordinates have been transformed into polar
coordinates (and the z-coordinate is left as is).
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Not surprisingly, to convert to cylindrical coordinates, we simply apply x* =
rcos (f) and y = rsin (0) to the x and y coordinates. That is, the cylindrical
coordinate transformation is

T (r,0,z) = (rcos(0),rsin(0), z)

Cylindrical coordinates get their name from the fact that the surface "r =
constant” is a cylinder. For example, the cylinder

r(6,z) = (cos () ,sin (9), z)

is obtained by setting r = 1 in the cylindrical coordinate transformation.
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Likewise, parameterizations of many other level surfaces can be derived from
the cylindrical coordinate transformation.

In particular, if points in the zy-plane are in polar coordinates, then z =
f(r,0) is a surface in 3 dimensional space, and the parameterization of that
surface is

r(r,0) = (cos (9),sin (8), f (r,0))

More generally, U (r, 0, z) = k defines a level surface in which the zy components
are represented in polar coordinates.

EXAMPLE 1 Find a parametrization of the right circular cone
22— a2 4

by pulling back into cylindrical coordinates.

Solution: Transforming x and y into polar coordinates yields



Letting z = r in the cylindrical coordinate transformation yields
r(r,0) = (rcos(f),rsin(0),r)

which is a parametrization of the right circular cone.

EXAMPLE 2 Parameterize the surface z = 22 — %2 by pulling back
into cylindrical coordinates
Solution: Setting = rcos (f) and y = rsin () leads to
z = r?cos® (0) — r?sin? (0) = 72 cos (26)
Thus, the parametrization is

r (r,0) = (rcos (0),rsin ()7 cos (26))



Check your Reading: In what plane are the cylindrical coordinates of a point
the same as its polar coordinates?

Spherical Coordinates

The spherical coordinates of a point P are defined to be (p, ¢, 0), where p is the
distance from P to the origin, ¢ is the angle formed by the z-axis and the ray
from the origin to P, and 6 is the polar angle from polar coordinates.




Specifically, the Cartesian coordinates (z,y, z) of a point P are related to the
spherical coordinates (p, ¢,6) of P through two right triangles. Relationships
among z, y, 0, and the polar distance r are contained in the familiar polar
coordinate triangle. Relationships among r, z, p, and ¢ are conveyed by a
second right triangle.
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These 2 triangles are at the heart of spherical coordinates. For example, the
triangle imply the relationships

x =rcos(0) z = pcos (¢)
y = rsin () r = psin(¢) .

so that if we eliminate r using the fact that r = psin (¢), we obtain
v = psin(9)cos(9), y=psin(@)sin(0), == pcos(9) (2)

which is the coordinate transformation that maps spherical coordinates into
Cartesian coordinates.

EXAMPLE 3 Transform the point (4, 7/3, 7/2) from spherical into
Cartesian coordinates.

Solution: The transformation (2) implies that
T = 4sin (g) cos (g)
y = 4sin (g) sin (g) =

z = 4cos (g) =2

V3
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5 0=0
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Thus, (4,7/3,7/2) in spherical coordinates is the same point as
(O, 23, 2) in Cartesian coordinates.



In spherical coordinates, » = psin(¢) and z = pcos(¢), so that the polar
x2 +y? = r? becomes
2?4+ y? = p?sin® (¢)

Moreover, 72 + 22 = p?, so that we have the identity

x2+y2+z2=p2 (3)

Thus, if R is constant, then p = R is a sphere of radius R centered at the origin.
In addition, we usually restrict 6 to [0,27] and ¢ to [0, 7] so that the sphere is
covered only once.

Restricting ¢ and 6 to smaller intervals yields smaller sections of a sphere.

EXAMPLE 4 What section of the sphere p = 1 is given by ¢ in
[0,7/2], 6 in [0, 27]?

Solution: Since ¢ = 7/2 is the zy-plane, the set of points p = 1,
¢ in [0,7/2], 0 in [0,27] is the part of the unit sphere above the



zy-plane—i.e., the upper hemisphere.

0 ranges

from O to 27
{ ranges
from 0 to %

Similarly, ¢ = k for k constant is a cone with sides at angle k to the vertical,
and 6 = ¢ for ¢ constant is a vertical plane of the form y = tan (¢) z
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¢ = k for k constant & = ¢ for ¢ constant

Check your Reading: For what values of ¢, 0 is the lower unit hemisphere
defined?



Surfaces in Spherical Coordinates

Since & = psin (¢) cos (0), y = psin(¢)sin (), and z = pcos (), the position
vector of a point in space is

r (¢,0) = (psin () cos (0) , psin (¢) sin (0) , pcos (¢)) = pe, (¢,0)

where we define e, (¢, 0) = (sin (¢) cos (0) ,sin (¢) sin (0) , cos (¢)) . That is, the
surface r (¢, ) can be written more compactly as

r (¢a 9) = pep (¢7 9)

It follows that the parameterization of the graph of p = f (¢,0) is given by
r(¢,0) = f(¢,0) (sin () cos (0) , sin (¢) sin (0) , cos (¢)) (4)

or equivalently, r (¢,0) = f (¢,0) e, (¢,6)

In particular, if we substitute x = psin (¢) cos (6), y = psin (¢)sin (0) , and
z = pcos(¢) into the equation of a level surface and solve for p, then (4)
parameterizes a coordinate patch on that level surface.

EXAMPLE 5 Pull back into spherical coordinates to obtain a pa-
rameterization of the hyperboloid in two sheets

22—yt =1

Solution: Substituting from (2) and simplifying yields

p? cos? (¢) — p?sin? (@) cos? () — p?sin? (¢)sin® (0) = 1

p? cos® (¢) — p?sin® (@) [cos® (0) +sin® (9)] = 1

p*cos® (¢) — p’sin® (¢) = 1
However, cos? (¢) — sin? (¢) = cos (2¢) , so that p? cos (2¢) = 1 and
§? = sec (2) (5)

Thus, the upper sheet of the hyperboloid is parameterized by r (¢, 6) =
sec (2¢ 1/2 ¢ , which yields
p

r (¢,0) = v/sec (2¢) (sin(¢) cos () ,sin (@) sin (0) , cos (¢))
since e, = (sin (¢) cos (6) ,sin (¢) sin (#) , cos (¢)) .



Spherical coordinates provides us a straightforward means of defining certain
types of surfaces of revolution. If 0 < a < 7 and if f (¢) > 0 on [0, @] does not
depend on 6, then the surface p = f (¢) on [0, o] is the revolution of the curve

r(¢,0) = (f (¢)sin(¢),0, f (¢) cos (¢)), ¢ in [0,0]

in the zz-plane around the z-axis. Correspondingly, it has a parameterization
of

r (¢a 0) = f (¢) eP (¢, 9)
If « = 7 and f (¢) is positive and continuous on [0, 7], then p = f (¢) is called
a radially symmetric deformation of the sphere.

EXAMPLE 6 Discuss the graph of the surface
p=540.1¢sin(7¢), ¢ in [0,7]
Solution: The parameterization is given by .
£ (6,0) = (5+0.16sin (76)) e, (6, 6)
which by definition of e, (¢,0) leads to

z=(5+40.1¢sin (7¢))sin (¢) cos (6), y = (54 0.1¢sin (7¢)) sin (¢) sin (6)

z = (54 0.1¢sin (7¢)) cos (¢)

The surface is the revolution of the curve

r(¢,0) = ((5+0.1¢sin (7¢))sin (¢),0,(5 4+ 0.1¢sin (7¢)) cos (¢))

about the z-axis. The curve is shown below:
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The resulting surface of revolution then follows:

Check your Reading: Is the surface in example 6 a deformation of the sphere?

Conic Sections

A conic section is the curve formed by the intersection of a plane with the right
circular cone z2 + y? = z2. For example, the plane in the conic explorer below
is given by z = p + ex, where p is the parameter of the conic and € > 0 is its
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eccentricity:

Parameter: p = 1.98021 Eccentricity: £ = 0.55294

If £ = 0, then the conic is a circle. If 0 < ¢ < 1, then the conic is an ellipse. If
€ =1, then the conic is a parabola, and if € > 1, then the conic is a hyperbola.

In cylindrical coordinates, the plane is given by z = p + er cos () and the
cone is given by r2 = 22. As a result, the intersection of the plane and the cone
is given by

r = p+ercos(d)
r—ercos(f) = p
r(l—ecos(d)) = »p
which results in »
"T 1 ccos (9) (6)

This is actually the graph of the projection in polar coordinates of the conic
into the zy-plane.

projectino
Moreover, z = +r and cylindrical coordinates implies that parameterization of
the conic itself is

~/ pcos() psin () p
p(0) = <1 —ecos ()1 —ecos(f) 1 €COS(9)>
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where we use the vector-valued function p since its length is the spherical coor-
dinate distance p.

EXAMPLE 7 Find the projection of the conic with eccentricity
€ = 1 and parameter p = 4. What type of conic is it? What is the
parameterization of the conic itself?

Solution: The projection is given by (6) with e =1 and p = 4:

4

r=——-
1—cos(0)
This is a parabola with parameter p = 4. It is parameterized by

_/ 4cos()  4sin(0) 4
p(t) = <1_COS(9)’ 1 —cos (6)’ 1—005(9)>

which is shown below:

Conic projections of the form (6) are symmetric about the z-axis. Arbitrary
conic projections follow from the intersection of the cone with an arbitrary plane,
which is given by z = ax + by + p with a, b, and p constant.

EXAMPLE 8 Find the projection of the conic formed by the in-
tersection of z = 3 + 0.5y with the right circular cone. What type
of conic is it? What is the parameterization of the conic itself?
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Solution: The intersection of z = 3 + 0.5y with the right circular

cone r? = 22 is given by

3

r —70.5sin ()

=

r =3+ 0.5rsin (0)

which results in the projection

0.5sin ()

1—

0.5 that

the conic itself has the

This is an ellipse with parameter p = 3 and eccentricity ¢

Moreover,

is symmetric about the y-axis.

parameterization
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which is shown below:
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Exercises
1. Convert the following points from cylindrical coordinates (r, 8, z) to Cartesian
coordinates (i.e., xyz coordinates):

a. (3,7/3,3) b (7,7/2,0)
c. (5,0,0) d. (4,7, —2)

2. What section of the cylinder 22 4+ y? = 1 corresponds to cylindrical coordi-
nates in the range 6 in [0, 7] and z in [—1,1]?
3. Convert the following points from spherical coordinates (p, ¢, ) to Cartesian
coordinates:

a. (3,7/3,m) b. (7,7/2,7/4)

c. (=1,—m/2,7m) d. (5,0,0)
4. What section of the unit sphere corresponds to spherical coordinates in the

range ¢ in [0, 7] and 6 in [0, 7]?

Find the pullback of the following surfaces into cylindrical coordinates. What is
a parameterization of the surface?

5 22442=25 6. 224+1y%>=230
7. 224y -22=1 8. 22 —y?+22=9
9. 3x+4dy=2 10. 22+22=11
11, 22 4 y% = 22 12, z=22%—¢?

Find the pullback of the following surfaces into spherical coordinates. What is
a parameterization of the surface?

13. 2?2 49y2+22=25 4. 22 +y*+22=30

15. z=1 16. z+y=1

17. 22 +42—22=1 18. 22 —9y?422=9
19. z=1-2y 20. z2+4+22=11
21, a? +y? =22 22. x+y=1

23. 2?2419z =2zy 24, z=2x%—1y?

Find a parameterization of the conic section formed by the intersection of z =
p + ex and the right circular cone. Then sketch its graph.

25. p=1, =31 2. p=1, =0
27. p=2, e=1 28. p=-1, =01
29. p=1, e=2 30. p=0, e=1

31. Discuss the surface of revolution given by

p=241, gin [0,7]

™

What is its parameterization? Is it a deformation of the sphere?
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32. Discuss the surface of revolution given by
p=2sin(6), ¢in [0,7]

What is its parameterization? Is it a deformation of the sphere?

33.  The curve formed by the intersection of a sphere centered at the
origin and a plane through the origin is called a great circle. Let’s use spherical
coordinates to develop a method for parameterizing a great circle.

1. (a) A non-vertical plane through the origin is of the form z = az +
by, where a and b are constants. Show that spherical coordinates
transforms the equation into

cos (¢) = sin (@) [a cos (6) + bsin (6)]

(b) Show that intersection of the plane with a sphere of radius R results
in the parameterization

r (t) = Rsin (¢) (cos (0),sin (0) ,acos (#) + bsin (9))

where tan (¢) = acos (6) + bsin (0) . Then use a right triangle to find
sin (¢) in terms of a cos () + bsin (0) to finish the parameterization.

34. Show that cylindrical coordinates results in the same parameterization
for a great circle (see exercise 33) as does spherical coordinates.

35. If a point has a location of (p,¢,0) in spherical coordinates, then its
longitude is € and its latitude is

T
¢—§—¢

What is the parameterization of a sphere of radius R in latitude-longitude co-
ordinates? (be sure to simplify expressions like

(g —e) md s (G-9)
sin{5 —¢) and cos|g—¢

36. What is the equation in spherical coordinates of the sphere of radius R
centered at (0,0, R)? What is its parameterization?
37. For A, w, k, and § constants, the function

fpt)= %cos(wt—kp—&—é)

is a spherical wave about the origin with angular frequency w, wavenumber k,
and phase ¢. Explain why the spherical wave is the same in all directions. What
happens to the spherical wave as the spherical distance p goes to infinity?
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38. (Continues 37) Spherical waves are often studied as they impact a
small region of a plane.

ROUCCE [\

In particular, for R > 0 constant, points (z,y, R) in the plane z = R are at a
distance p from the origin, where
1/2
p= (r2 + RQ) /
and 72 = 22 + y2. Show that the Maclaurin’s series of p as a function of r is of

the form

7.2 7n4 7’6

=R+ ———+—=+...
PR SR TR T ems T
so that if r2 << R (i.e., if 72 is much, much, less than R, corresponding to the
region of impact in the z = R plane being relatively small with respect to the

distance from the source), then
2
r
~R+ —
PEIT IR

Finally, explain why for small regions in the z = R plane, a spherical wave about
the origin is approximately the same as

A kr?
f(rt) = R 08 (wt R +51>

where 01 = 0 — kR is a new phase constant for the spherical wave. (i.e., a change
in phase).

39. The interconnected double helix structure of DNA describes a helicoid,
which is the surface parametrized by

r(6,v) = (vcos () ,vsin(9),6)

Show that v = @tan (¢) and that the helicoid in spherical coordinates is given
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by p = 0sec(9).

40. What is the parameterization of the helicoid in exercise 39 in cylindrical
coordinates?

41. Write to Learn: Explain in a short essay why a torus is radially
symmetric but why there does not exist a postive continuous function f (¢)
on [0,7] such that the torus is given by p = f(¢) for ¢ in [0,7] in spherical
coordinates. (i.e., explain why it is impossible to deform a sphere into a torus).

42. Is an ellipsoid a radially symmetric deformation of the sphere? What
about a paraboloid? Or a hyperboloid? Explain.

Cylindrical and spherical coordinates are examples of curvilinear coordinate sys-
tems. Fxercises 43-46 explore some additional curvilinear coordinates.

43. Ellcylindrical coordinates assign a point P in three dimensional
space the coordinates (u, d, z) , where

x = cosh (u) cos (#), y = sinh (u)sin ()

and where z is the usual z-coordinate. What surface corresponds to u = a for
a constant? What surface corresponds to # = ¢ for ¢ constant?
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44. Paraboloidal coordinates assign a point P in three dimensional space
the coordinates (u,v,6), where

x=wuvcos(f), y=wuvsin(f), z= 5
What surface corresponds to u = a for a constant? What surface corresponds
to v = b for b constant? What surface corresponds to # = ¢ for ¢ constant?

45. Bispherical coordinates assign a point P in three dimensional space
the coordinates (v, ¢, 0) , where

sin (¢) cos (0) _ sin(¢)sin(0) B sinh (v)

~ cosh (v) — cos (¢)’ Y= Cosh (v) — cos (¢)’ cosh (v) — cos (¢)

Explain a surface of the form v = k for k constant is a sphere of radius csch(k)
centered at (0,0, coth (k)).

46. Toroidal coordinates assign a point P in three dimensional space the
coordinates (v, ¢,0), where

sinh (v) cos (6) _ sinh (v)sin () _ sin (¢)

~ cosh (v) — cos (¢)’ Y= Cosh (v) — cos (¢)’ # 7 Cosh (v) — cos ()

Explain a surface of the form v = k for k constant is a torus, and explain why
if k1 # ko, then v = k1 does not intersect v = k.

18



