
The Jacobian

The Jacobian of a Transformation

In this section, we explore the concept of a "derivative" of a coordinate transfor-
mation, which is known as the Jacobian of the transformation. However, in this
course, it is the determinant of the Jacobian that will be used most frequently.
If we let u = hu; vi ; p = hp; qi, and x = hx; yi, then (x; y) = T (u; v) is given

in vector notation by
x = T (u)

This notation allows us to extend the concept of a total derivative to the total
derivative of a coordinate transformation.

De�nition 5.1: A coordinate transformation T (u) is di¤erentiable
at a point p if there exists a matrix J (p) for which

lim
u!p

jjT (u)� T (p)� J (p) (u� p)jj
jju� pjj = 0 (1)

When it exists, J (p) is the total derivative of T (u) at p.

In non-vector notation, de�nition 5.1 says that the total derivative at a point
(p; q) of a coordinate transformation T (u; v) is a matrix J (u; v) evaluated at
(p; q) : In a manner analogous to that in section 2-5, it can be shown that this
matrix is given by

J (u; v) =

�
xu xv
yu yv

�
(see exercise 46). The total derivative is also known as the Jacobian Matrix of
the transformation T (u; v) :

EXAMPLE 1 What is the Jacobian matrix for the polar coordinate
transformation?

Solution: Since x = r cos (�) and y = r sin (�) ; the Jacobian matrix
is

J (r; �) =

�
xr x�
yr y�

�
=

�
cos (�) �r sin (�)
sin (�) r cos (�)

�
If u (t) = hu (t) ; v (t)i is a curve in the uv-plane, then x (t) = T (u (t) ; v (t)) is
the image of u (t) in the xy-plane. Moreover,

dx

dt
=

�
dx
dt
dy
dt

�
=

�
xu

du
dt + xv

dv
dt

yu
du
dt + yv

dv
dt

�
=

�
xu xv
yu yv

� �
du
dt
dv
dt

�
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The last vector is du=dt: Thus, we have shown that if x (t) = T (u (t)) ; then

dx

dt
= J (u)

du

dt

That is, the Jacobian maps tangent vectors to curves in the uv-plane to tangent
vectors to curves in the xy-plane.

In general, the Jacobian maps any tangent vector to a curve at a given point to
a tangent vector to the image of the curve at the image of the point.

EXAMPLE 2 Let T (u; v) =


u2 � v2; 2uv

�
a) Find the velocity of u (t) =



t; t2

�
when t = 1:

b) Find the Jacobian and apply it to the vector in a)

c) Find x (t) = T (u (t)) in the xy-plane and then �nd its velocity
vector at t = 1: Compare to the result in (b).

Solution: a) Since u0 (t) = h1; 2ti ; the velocity at t = 1 is u0 (1) =
h1; 2i :
b) Since x (u; v) = u2�v2 and y (u; v) = 2uv; the Jacobian of T (u; v)
is

J (u; v) =

�
xu xv
yu yv

�
=

�
2u �2v
2v 2u

�
Since u0 = h1; 2ti ; we have

J (u; v)u0 =

�
2u �2v
2v 2u

� �
1
2t

�
=

�
2u (1)� 2v (2t)
2v (1) + 2u (2t)

�
=

�
2u� 4tv
2v + 4tu

�
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Substituting hu; vi =


t; t2

�
yields

x0 = J (u; v)u0 =

�
2t� 4t

�
t2
�

2t2 + 4t (t)

�
=

�
2t� 4t3
6t2

�
In vector form, x0 (t) =



2t� 4t3; 6t2

�
; so that x0 (1) = h�2; 6i :

c) Substituting u = t; v = t2 into T (u; v) =


u2 � v2; 2uv

�
results

in
x (t) =

�
t2 � t4; 2t3

�
which has a velocity of x0 (t) =



2t� 4t3; 6t2

�
. Moreover, x0 (1) =

h�2; 6i :

Check your Reading: At what point in the xy-plane is x0 (1) tangent to the
curve?

The Jacobian Determinant

The determinant of the Jacobian matrix of a transformation is given by

det (J) =

���� xu xv
yu yv

���� = @x

@u

@y

@v
� @x
@v

@y

@u
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However, we often use a notation for det (J) that is more suggestive of how the
determinant is calculated.

@ (x; y)

@ (u; v)
=
@x

@u

@y

@v
� @x
@v

@y

@u

The remainder of this section explores the Jacobian determinant and some of
its more important properties.

EXAMPLE 3 Calculate the Jacobian Determinant of

T (u; v) =


u2 � v; u2 + v

�
Solution: If we identify x = u2 � v and y = u2 + v; then

@ (x; y)

@ (u; v)
=

@x

@u

@y

@v
� @x
@v

@y

@u

= (2u) (1)� (�1) (2u)
= 4u

Before we consider applications of the Jacobian determinant, let�s develop some
of the its properties. To begin with, if x (u; v) and y (u; v) are di¤erentiable
functions, then

@ (y; x)

@ (u; v)
=

@y

@u

@x

@v
� @y
@v

@x

@u

= �
�
@x

@u

@y

@v
� @x
@v

@y

@u

�
= �@ (x; y)

@ (u; v)

from which it follows immediately that

@ (x; x)

@ (u; v)
=
@ (y; y)

@ (u; v)
= 0

Similarly, if f (u; v) ; g (u; v) ; and h (u; v) are di¤erentiable, then

@ (f + g; h)

@ (u; v)
=

@ (f + g)

@u

@h

@v
� @ (f + g)

@v

@h

@u

=
@f

@u

@h

@v
+
@g

@u

@h

@v
� @f
@v

@h

@u
� @g
@v

@h

@u

=

�
@f

@u

@h

@v
� @f
@v

@h

@u

�
+

�
@g

@u

@h

@v
� @g
@v

@h

@u

�
=

@ (f; h)

@ (u; v)
+
@ (g; h)

@ (u; v)

4



The remaining properties in the next theorem can be obtained in similar fashion.

Theorem 5.2: If f (u; v) ; g (u; v) ; and h (u; v) are di¤erentiable functions
and k is a number, then

@(g;f)
@(u;v) = �

@(f;g)
@(u;v)

@(f+g;h)
@(u;v) = @(f;h)

@(u;v) +
@(g;h)
@(u;v)

@(f;f)
@(u;v) = 0

@(f�g;h)
@(u;v) = @(f;h)

@(u;v) +
@(g;h)
@(u;v)

@(kf;g)
@(u;v) = k

@(f;g)
@(u;v)

@(fg;h)
@(u;v) =

@(f;h)
@(u;v) g + f

@(g;h)
@(u;v)

These and additional properties will be explored in the exercises.

EXAMPLE 4 Verify the property

@ (fg; h)

@ (u; v)
=
@ (f; h)

@ (u; v)
g + f

@ (g; h)

@ (u; v)

Solution: Direct calculation leads to

@ (fg; h)

@ (u; v)
=

@ (fg)

@u

@h

@v
� @ (fg)

@v

@h

@u

=

�
@f

@u
g + f

@g

@u

�
@h

@v
�
�
@f

@v
g + f

@g

@v

�
@h

@u

=

�
@f

@u

@h

@v
� @f
@v

@h

@u

�
g + f

�
@g

@u

@h

@v
� @g
@v

@h

@u

�
=

@ (f; h)

@ (u; v)
g + f

@ (g; h)

@ (u; v)

Check Your Reading: If k is constant and f (u; v) is di¤erentiable, then what
is

@ (k; f)

@ (u; v)
?

The Area Di¤erential

Let T (u; v) be a smooth coordinate transformation with Jacobian J (u; v) ; and
let R be the rectangle spanned by du = hdu; 0i and dv = h0; dvi : If du and dv
are su¢ ciently close to 0, then T (R) is approximately the same as the parallel-
ogram spanned by

dx = J (u; v) du = hxudu; yudu; 0i
dy = J (u; v) dv = hxvdv; yvdv; 0i
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If we let dA denote the area of the parallelogram spanned by dx and dy; then
dA approximates the area of T (R) for du and dv su¢ ciently close to 0.

The cross product of dx and dy is given by

dx� dy =
�
0; 0;

���� xu xv
yu yv

����� dudv
from which it follows that

dA = jjdx� dyjj = jxuyv � xvyuj dudv (2)

Consequently, the area di¤erential dA is given by

dA =

����@ (x; y)@ (u; v)

���� dudv (3)

That is, the area of a small region in the uv-plane is scaled by the Jacobian
determinant to approximate areas of small images in the xy-plane.

EXAMPLE 5 Find the Jacobian determinant and the area di¤er-
ential of T (u; v) =



u2 � v2; 2uv

�
at (u; v) = (1; 1) ; What is the

approximate area of the image of the rectangle [1; 1:4]� [1; 1:2]?

Solution: The Jacobian determinant is

@ (x; y)

@ (u; v)
=

@x

@u

@y

@v
� @x
@v

@y

@u

= (2u) (2u)� (�2v) (2v)
= 4u2 + 4v2

Thus, the area di¤erential is given by

dA =

����@ (x; y)@ (u; v)

���� dudv = �4u2 + 4v2� dudv
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On the rectangle [1; 1:4]� [1; 1:2], the variable u changes by du = 0:4
and v changes by dv = 0:2. We evaluate the Jacobian at (u; v) =
(1; 1) and obtain the area

dA = (4 � 12 + 4 � 12) � 0:4 � 0:2 = 0:32

which is the approximate area in the xy-plane of the image of [1; 1:4]�[1; 1:2]
under T (u; v) :

Let�s look at another interpretation of the area di¤erential. If the coordinate
curves under a transformation T (u; v) are su¢ ciently close together, then they
form a grid of lines that are "practically straight" over short distances. As a
result, su¢ ciently small rectangles in the uv-plane are mapped to small regions
in the xy-plane that are practically the same as parallelograms.

11�6�d

Consequently, the area di¤erential dA approximates the area in the xy-plane of
the image of a rectangle in the uv-plane as long as the rectangle in the uv-plane
is su¢ ciently small.

7



EXAMPLE 6 Find the Jacobian determinant and the area di¤er-
ential for the polar coordinate transformation. Illustrate using the
image of a "grid" of rectangles in polar coordinates.

Solution: Since x = r cos (�) and y = r sin (�) ; the Jacobian
determinant is

@ (x; y)

@ (r; �)
=

@x

@r

@y

@�
� @x
@�

@y

@r

= cos (�) r cos (�)��r sin (�) sin (�)
= r

�
cos2 (�) + sin2 (�)

�
= r

Thus, the area di¤erential is dA = rdrd�:
Geometrically, "rectangles" in polar coordinates are regions between
circular arcs away from the origin and rays through the origin. If
the distance changes from r to r + dr for r > 0 and some small
dr > 0; and if the polar angle changes from � to � + d� for some
small angle d�; then the region covered is practically the same as a
small rectangle with height dr and width ds, which is the distance
from � to � + d� along a circle of radius r.

If an arc subtends an angle d� of a circle of radius r, then the length
of the arc is ds = rd�. Thus,

dA = dr ds = rdrd�

Check your Reading: Do "rectangles" in polar coordinates resemble rectan-
gles if r is arbitrarily close to 0?
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The Inverse Function Theorem

Recall taht if a coordinate transformation T maps an open region U in the uv-
plane to an open region V in the xy-plane, then T is 1-1 if each point in V is
the image of only one point in U:

Additionally, if every point in V is the image under T (u; v) of at least one point
in U; then T (u; v) is said to map U onto V:
If T (u; v) is a 1-1 mapping of a region U in the uv-plane onto a region V in

the xy-plane, then we de�ne the inverse transformation of T from V onto U by

T�1 (x; y) = (u; v) only if (x; y) = T (u; v)

The Jacobian determinant can be used to determine if T has an inverse trans-
formation T�1 on at least some small region about a given point.

Inverse Function Theorem: Let T (u; v) be a coordinate trans-
formation on an open region S in the uv-plane and let (p; q) be a
point in S: If

@ (x; y)

@ (u; v)

����
(u;v)=(p;q)

6= 0

then there is an open region U containing (p; q) and an open region
V containing (x; y) = T (p; q) such that T�1 exists and maps V onto
U:

image

The proof of the inverse function theorem follows from the fact that the Jacobian
matrix of T�1 (x; y) ; when it exists, is given by the inverse of the Jacobian of
T ,

J�1 (x; y) =

�
@ (x; y)

@ (u; v)

��1 �
yv �xv
�yu xu

�
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which features a Jacobian determinant with a negative power. Thus, J�1 exists
only if the determinant of J (u; v) is non-zero.

EXAMPLE 7 Where is T (r; �) = hr cos (�) ; r sin (�)i invertible?

Solution: The Jacobian determinant for polar coordinates is

@ (x; y)

@ (r; �)
= r

which is non-zero everywhere except the origin. Thus, at any point
(r0; �0) with r0 > 0, there is an open region U in the r�-plane and
an open region V containing (x; y) = (r0 cos (�0) ; r0 sin (�0)) such
that T�1 (x; y) exists and maps V onto U:

We will explore the result in example 7 more fully in the exercises. In particular,
we will show that

T�1 (x; y) =

*p
x2 + y2; 2 tan�1

 
y

x+
p
x2 + y2

!+
Clearly, T�1 is not de�ned on any open region containing (0; 0) : Also, if y = 0
and x > 0; then

2 tan�1
�

0

x+
p
x2 + 02

�
= 2 tan�1

�
0

x+ jxj

�
= 0

But if y = 0 and x < 0; then

2 tan�1
�

0

x+
p
x2 + 02

�
= 2 tan�1

�
0

x+ jxj

�
= 2 tan�1

�
0

0

�
That is, a di¤erent representation of T�1 must be used on any region which
intersects the negative real axis.

Exercises
Find the velocity vector in the uv-plane to the given curve. Then �nd Jacobian
matrix and the tangent vector at the corresponding point to the image of the
curve in the xy-plane.

1. T (u; v) = hu+ v; u� vi 2. T (u; v) = h2u+ v; 3u� vi
u = t; v = t2 at t = 1 u = t; v = t2 at t = 1

3. T (u; v) =


u2v; uv2

�
4. T (u; v) =



u2 � v2; 2uv

�
u = t; v = 3t at t = 2 u = cos (t) ; v = sin (t) at t = 0

5. T (u; v) = hu sec (v) ; u tan (v)i 6. T (u; v) = hu cosh (v) ; u sinh (v)i
u = t; v = � at t = 1 u = t; v = t2 at t = 1
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Find the Jacobian determinant and area di¤erential of each of the following
transformations.

7. T (u; v) = hu+ v; u� vi 8. T (u; v) = huv; u� vi
9. T (u; v) =



u2 � v2; 2uv

�
10. T (u; v) =



u3 � 3uv2; 3u2v � v3

�
11. T (u; v) = huev; ue�vi 12. T (u; v) = heu cos (v) ; eu sin (v)i
13. T (u; v) = h2u cos (v) ; 3u sin (v)i 14. T (u; v) =



u2 cos (v) ; u2 sin (v)

�
15. T (u; v) = heu cos (v) ; e�u sin (v)i 16. T (u; v) = heu cosh (v) ; e�u sinh (v)i
17. T (u; v) = hsin (u) sinh (v) ; cos (u) cosh (v)i 18. T (u; v) = hsin (uv) ; cos (uv)i

In each of the following, sketch several coordinate curves of the given coordinate
system to form a grid of "rectangles" (i.e., make sure the u-curves are close
enough to appear straight between the v-curves and vice-versa. Find the area
di¤erential and discuss its relationship to the "coordinate curve grid". (19 - 22
are linear transformations and have a constant Jacobian determinant)

19. T (u; v) = h2u; vi 20. T (u; v) = hu+ 1; vi
21. T (u; v) =

D
u�vp
2
; u+vp

2

E
22. T (u; v) =

D
u�

p
3v

2 ;
p
3u+v
2

E
23. parabolic coordinates 22. tangent coordinates

T (u; v) =


u2 � v2; 2uv

�
T (u; v) =

D
u

u2+v2 ;
v

u2+v2

E
25. elliptic coordinates 24. bipolar coordinates

T (u; v) = hcosh (u) cos (v) ; sinh (u) sin (v)i T (u; v) =
D

sinh(v)
cosh(v)�cos(u) ;

sin(u)
cosh(v)�cos(u)

E

Some of the exercises below refer to the following formula for the inverse of the
Jacobian:

J�1 (x; y) =

�
@ (x; y)

@ (u; v)

��1 �
yv �xv
�yu xu

�
(4)

27. Find T�1 (x; y) for the transformation

T (u; v) = hu+ v; u� vi

by letting x = u + v; y = u � v and solving for u and v: Then �nd J�1 (x; y)
both (a) directly from T�1 (x; y) and (b) from the formula (4).
28. Find T�1 (x; y) for the transformation

T (u; v) = hu+ 4; u� vi

Then �nd J�1 (x; y) both (a) directly from T�1 (x; y) and (b) from the formula
(4).
29. At what points (u; v) does the coordinate transformation

T (u; v) = heu cos (v) ; eu sin (v)i

have an inverse? Can the same inverse be used over the entire uv-plane?
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30. At what points (u; v) does the coordinate transformation

T (u; v) = hu cosh (v) ; u sinh (v)i

have an inverse.
31. Show that if T (u; v) = hau+ bv; cu+ dvi where a; b; c; d are constants

(i.e., T (u; v) is a linear transformation ), then J (u; v) is the matrix of the linear
transformation T (u; v) :
32. Show that if T (u; v) = hau+ bv; cu+ dvi where a; b; c; d are constants

(i.e., T (u; v) is a linear transformation ), then

@ (x; y)

@ (u; v)
= ad� bc

33. Show that if f (u; v) is di¤erentiable, then

@ (f; f)

@ (u; v)
= 0

34. Show that if f (u; v) and g (u; v) are di¤erentiable and if k is constant,
then

@ (kf; g)

@ (u; v)
= k

@ (f; g)

@ (u; v)

35. Explain why if x > 0; then the inverse of the polar coordinate trans-
formation is

T�1 (x; y) =
Dp

x2 + y2; tan�1
�y
x

�E
36. The Jacobian Matrix of (r; �) = T�1 (x; y) is

K (x; y) =

�
rx ry
�x �y

�
Find K (x; y) for T�1 (x; y) in exercise 35, and then use polar coordinates to
explain its relationship to

J�1 (r; �) =
1

r

�
r cos (�) r sin (�)
� sin (�) cos (�)

�
37. Show that if x < 0; then the inverse of the polar coordinate transfor-

mation is
T�1 (x; y) =

Dp
x2 + y2; � + tan�1

�y
x

�E
38. Use the following steps to show that if (x; y) is not at the origin or on

the negative real axis, then

T�1 (x; y) =

*p
x2 + y2; 2 tan�1

 
y

x+
p
x2 + y2

!+
is the inverse of the polar coordinate transformation.
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a. Verify the identity

tan (�) =
sin (2�)

1 + cos (2�)

b. Let � = �=2 in a. Multiply numerator and denominator by r:
c. Simplify to an equation in x; y; and �:

39. The coordinate transformation of rotation about the origin is given by

T (u; v) = hcos (�)u+ sin (�) v;� sin (�) v + cos (�)ui

where � is the angle of rotation. What is the Jacobian determinant and area
di¤erential for rotation through an angle �? Explain the result geometrically.
40. The coordinate transformation of scaling horizontally by a > 0 and

scaling vertically by b > 0 is given by

T (u; v) = hau; bvi

What is its area di¤erential? Explain the result geometrically.
41. A transformation T (u; v) is said to be a conformal transformation if its

Jacobian matrix preserves angles between tangent vectors. Consider that the
vector h1; 0i is parallel to the line r = � and that the vector h1; 1i is parallel to
the line r = �: Also, notice that r = � and r = � intersect at (r; �) = (�; �) at a
45� angle.

For J (r; �) for polar coordinates, calculate

v = J (�; �)

�
1
0

�
and w = J (�; �)

�
1
1

�
Is the angle between v andw a 45� angle? Is the polar coordinate transformation
conformal?
42. Find the Jacobian and repeat exercise 41 for the transformation

T (�; �) = he� cos (�) ; e� sin (�)i
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43. Write to Learn: Write a short essay in which you calculate the area
di¤erential of the transformation T (�; �) = he� cos (�) ; e� sin (�)i both compu-
tationally and geometrically.
44. Write to Learn: A coordinate transformation T (u; v) = hf (u; v) ; g (u; )i

is said to be area preserving if the area of the image of any region R in the uv-
plane is the same as the area of R: Write a short essay which uses the area
di¤erential to explain why a rotation through an angle � is area preserving.
45. Proof of a Simpli�ed Inverse Function Theorem: Suppose that

the Jacobian determinant of T (u; v) = hf (u; v) ; g (u; v)i is non-zero at a point
(p; q) and suppose that r (t) = hp+mt; q + nti ; t in [�"; "] ; is a line segment
in the uv-plane (m and n are numbers). Explain why if " is su¢ ciently close
to 0, then there is a 1-1 correspondence between the segment r (t) and its im-
age T (r (t)) ; t in [�"; "] : (Hint: �rst show that x (t) = f (p+mt; q + nt) is
monotone in t for t in [�"; "] ).
46. Write to Learn: Let T (u; v) = hx (u; v) ; y (u; v)i be di¤erentiable at

p = (p; q) and assume that its Jacobian matrix is of the form

J =

�
a b
c d

�
By letting u = hp+ h; qi in de�nition 5.1, (so that u � p = [h 0]

t in matrix
notation ), show that

lim
u!p

jT (u)� T (p)� J (p) (u� p)j
jju� pjj = 0

is transformed into

lim
h!0+

jjhx (p+ h; q)� x (p; q) ; y (p+ h; q)� y (p; q)i � hah; chijj
h

= 0

Use this to show that a = xu and c = yu: How would you �nd b and d? Explain
your derivations and results in a short essay.
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