The Jacobian

The Jacobian of a Transformation

In this section, we explore the concept of a "derivative" of a coordinate transformation, which is known as the Jacobian of the transformation. However, in this course, it is the determinant of the Jacobian that will be used most frequently.

If we let $\mathbf{u}=\langle u, v\rangle, \mathbf{p}=\langle p, q\rangle$, and $\mathbf{x}=\langle x, y\rangle$, then $(x, y)=T(u, v)$ is given in vector notation by

$$
\mathbf{x}=T(\mathbf{u})
$$

This notation allows us to extend the concept of a total derivative to the total derivative of a coordinate transformation.

Definition 5.1: A coordinate transformation $T(\mathbf{u})$ is differentiable at a point \mathbf{p} if there exists a matrix $J(\mathbf{p})$ for which

$$
\begin{equation*}
\lim _{\mathbf{u} \rightarrow \mathbf{p}} \frac{\|T(\mathbf{u})-T(\mathbf{p})-J(\mathbf{p})(\mathbf{u}-\mathbf{p})\|}{\|\mathbf{u}-\mathbf{p}\|}=0 \tag{1}
\end{equation*}
$$

When it exists, $J(\mathbf{p})$ is the total derivative of $T(\mathbf{u})$ at \mathbf{p}.

In non-vector notation, definition 5.1 says that the total derivative at a point (p, q) of a coordinate transformation $T(u, v)$ is a matrix $J(u, v)$ evaluated at (p, q). In a manner analogous to that in section 2-5, it can be shown that this matrix is given by

$$
J(u, v)=\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]
$$

(see exercise 46). The total derivative is also known as the Jacobian Matrix of the transformation $T(u, v)$.

EXAMPLE 1 What is the Jacobian matrix for the polar coordinate transformation?

Solution: Since $x=r \cos (\theta)$ and $y=r \sin (\theta)$, the Jacobian matrix is

$$
J(r, \theta)=\left[\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -r \sin (\theta) \\
\sin (\theta) & r \cos (\theta)
\end{array}\right]
$$

If $\mathbf{u}(t)=\langle u(t), v(t)\rangle$ is a curve in the $u v$-plane, then $\mathbf{x}(t)=T(u(t), v(t))$ is the image of $\mathbf{u}(t)$ in the $x y$-plane. Moreover,

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{c}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]=\left[\begin{array}{c}
x_{u} \frac{d u}{d t}+x_{v} \frac{d v}{d t} \\
y_{u} \frac{d u}{d t}+y_{v} \frac{d v}{d t}
\end{array}\right]=\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]\left[\begin{array}{c}
\frac{d u}{d t} \\
\frac{d v}{d t}
\end{array}\right]
$$

The last vector is $d \mathbf{u} / d t$. Thus, we have shown that if $\mathbf{x}(t)=T(\mathbf{u}(t))$, then

$$
\frac{d \mathbf{x}}{d t}=J(\mathbf{u}) \frac{d \mathbf{u}}{d t}
$$

That is, the Jacobian maps tangent vectors to curves in the $u v$-plane to tangent vectors to curves in the $x y$-plane.

In general, the Jacobian maps any tangent vector to a curve at a given point to a tangent vector to the image of the curve at the image of the point.

EXAMPLE 2 Let $T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle$
a) Find the velocity of $\mathbf{u}(t)=\left\langle t, t^{2}\right\rangle$ when $t=1$.
b) Find the Jacobian and apply it to the vector in a)
c) Find $\mathbf{x}(t)=T(\mathbf{u}(t))$ in the $x y$-plane and then find its velocity vector at $t=1$. Compare to the result in (b).

Solution: a) Since $\mathbf{u}^{\prime}(t)=\langle 1,2 t\rangle$, the velocity at $t=1$ is $\mathbf{u}^{\prime}(1)=$ $\langle 1,2\rangle$.
b) Since $x(u, v)=u^{2}-v^{2}$ and $y(u, v)=2 u v$, the Jacobian of $T(u, v)$
is

$$
J(u, v)=\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]=\left[\begin{array}{cc}
2 u & -2 v \\
2 v & 2 u
\end{array}\right]
$$

Since $\quad \mathbf{u}^{\prime}=\langle 1,2 t\rangle$, we have

$$
\begin{aligned}
J(u, v) \mathbf{u}^{\prime} & =\left[\begin{array}{cc}
2 u & -2 v \\
2 v & 2 u
\end{array}\right]\left[\begin{array}{c}
1 \\
2 t
\end{array}\right] \\
& =\left[\begin{array}{l}
2 u(1)-2 v(2 t) \\
2 v(1)+2 u(2 t)
\end{array}\right] \\
& =\left[\begin{array}{l}
2 u-4 t v \\
2 v+4 t u
\end{array}\right]
\end{aligned}
$$

Substituting $\langle u, v\rangle=\left\langle t, t^{2}\right\rangle$ yields

$$
\mathbf{x}^{\prime}=J(u, v) \mathbf{u}^{\prime}=\left[\begin{array}{c}
2 t-4 t\left(t^{2}\right) \\
2 t^{2}+4 t(t)
\end{array}\right]=\left[\begin{array}{c}
2 t-4 t^{3} \\
6 t^{2}
\end{array}\right]
$$

In vector form, $\mathbf{x}^{\prime}(t)=\left\langle 2 t-4 t^{3}, 6 t^{2}\right\rangle$, so that $\mathbf{x}^{\prime}(1)=\langle-2,6\rangle$.
c) Substituting $u=t, v=t^{2}$ into $T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle$ results in

$$
\mathbf{x}(t)=\left(t^{2}-t^{4}, 2 t^{3}\right)
$$

which has a velocity of $\mathbf{x}^{\prime}(t)=\left\langle 2 t-4 t^{3}, 6 t^{2}\right\rangle$. Moreover, $\mathbf{x}^{\prime}(1)=$ $\langle-2,6\rangle$.

Check your Reading: At what point in the $x y$-plane is $\mathbf{x}^{\prime}(1)$ tangent to the curve?

The Jacobian Determinant

The determinant of the Jacobian matrix of a transformation is given by

$$
\operatorname{det}(J)=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

However, we often use a notation for $\operatorname{det}(J)$ that is more suggestive of how the determinant is calculated.

$$
\frac{\partial(x, y)}{\partial(u, v)}=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

The remainder of this section explores the Jacobian determinant and some of its more important properties.

EXAMPLE 3 Calculate the Jacobian Determinant of

$$
T(u, v)=\left\langle u^{2}-v, u^{2}+v\right\rangle
$$

Solution: If we identify $x=u^{2}-v$ and $y=u^{2}+v$, then

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \\
& =(2 u)(1)-(-1)(2 u) \\
& =4 u
\end{aligned}
$$

Before we consider applications of the Jacobian determinant, let's develop some of the its properties. To begin with, if $x(u, v)$ and $y(u, v)$ are differentiable functions, then

$$
\begin{aligned}
\frac{\partial(y, x)}{\partial(u, v)} & =\frac{\partial y}{\partial u} \frac{\partial x}{\partial v}-\frac{\partial y}{\partial v} \frac{\partial x}{\partial u} \\
& =-\left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right) \\
& =-\frac{\partial(x, y)}{\partial(u, v)}
\end{aligned}
$$

from which it follows immediately that

$$
\frac{\partial(x, x)}{\partial(u, v)}=\frac{\partial(y, y)}{\partial(u, v)}=0
$$

Similarly, if $f(u, v), g(u, v)$, and $h(u, v)$ are differentiable, then

$$
\begin{aligned}
\frac{\partial(f+g, h)}{\partial(u, v)} & =\frac{\partial(f+g)}{\partial u} \frac{\partial h}{\partial v}-\frac{\partial(f+g)}{\partial v} \frac{\partial h}{\partial u} \\
& =\frac{\partial f}{\partial u} \frac{\partial h}{\partial v}+\frac{\partial g}{\partial u} \frac{\partial h}{\partial v}-\frac{\partial f}{\partial v} \frac{\partial h}{\partial u}-\frac{\partial g}{\partial v} \frac{\partial h}{\partial u} \\
& =\left(\frac{\partial f}{\partial u} \frac{\partial h}{\partial v}-\frac{\partial f}{\partial v} \frac{\partial h}{\partial u}\right)+\left(\frac{\partial g}{\partial u} \frac{\partial h}{\partial v}-\frac{\partial g}{\partial v} \frac{\partial h}{\partial u}\right) \\
& =\frac{\partial(f, h)}{\partial(u, v)}+\frac{\partial(g, h)}{\partial(u, v)}
\end{aligned}
$$

The remaining properties in the next theorem can be obtained in similar fashion.
Theorem 5.2: If $f(u, v), g(u, v)$, and $h(u, v)$ are differentiable functions and k is a number, then

$$
\begin{array}{ll}
\frac{\partial(g, f)}{\partial(u, v)}=-\frac{\partial(f, g)}{\partial(u, v)} & \frac{\partial(f+g, h)}{\partial(u, v)}=\frac{\partial(f, h)}{\partial(u, v)}+\frac{\partial(g, h)}{\partial(u, v)} \\
\frac{\partial(f, f)}{\partial(u, v)}=0 & \frac{\partial(f-g, h)}{\partial(u, v)}=\frac{\partial(f, h)}{\partial(u, v)}+\frac{\partial(g, h)}{\partial(u, v)} \\
\frac{\partial(k f, g)}{\partial(u, v)}=k \frac{\partial(f, g)}{\partial(u, v)} & \frac{\partial(f g, h)}{\partial(u, v)}=\frac{\partial(f, h)}{\partial(u, v)} g+f \frac{\partial(g, h)}{\partial(u, v)}
\end{array}
$$

These and additional properties will be explored in the exercises.

EXAMPLE 4 Verify the property

$$
\frac{\partial(f g, h)}{\partial(u, v)}=\frac{\partial(f, h)}{\partial(u, v)} g+f \frac{\partial(g, h)}{\partial(u, v)}
$$

Solution: Direct calculation leads to

$$
\begin{aligned}
\frac{\partial(f g, h)}{\partial(u, v)} & =\frac{\partial(f g)}{\partial u} \frac{\partial h}{\partial v}-\frac{\partial(f g)}{\partial v} \frac{\partial h}{\partial u} \\
& =\left(\frac{\partial f}{\partial u} g+f \frac{\partial g}{\partial u}\right) \frac{\partial h}{\partial v}-\left(\frac{\partial f}{\partial v} g+f \frac{\partial g}{\partial v}\right) \frac{\partial h}{\partial u} \\
& =\left(\frac{\partial f}{\partial u} \frac{\partial h}{\partial v}-\frac{\partial f}{\partial v} \frac{\partial h}{\partial u}\right) g+f\left(\frac{\partial g}{\partial u} \frac{\partial h}{\partial v}-\frac{\partial g}{\partial v} \frac{\partial h}{\partial u}\right) \\
& =\frac{\partial(f, h)}{\partial(u, v)} g+f \frac{\partial(g, h)}{\partial(u, v)}
\end{aligned}
$$

Check Your Reading: If k is constant and $f(u, v)$ is differentiable, then what is

$$
\frac{\partial(k, f)}{\partial(u, v)} ?
$$

The Area Differential

Let $T(u, v)$ be a smooth coordinate transformation with Jacobian $J(u, v)$, and let R be the rectangle spanned by $\mathbf{d u}=\langle d u, 0\rangle$ and $\mathbf{d} \mathbf{v}=\langle 0, d v\rangle$. If $d u$ and $d v$ are sufficiently close to 0 , then $T(R)$ is approximately the same as the parallelogram spanned by

$$
\begin{aligned}
d \mathbf{x} & =J(u, v) d \mathbf{u}=\left\langle x_{u} d u, y_{u} d u, 0\right\rangle \\
d \mathbf{y} & =J(u, v) d \mathbf{v}=\left\langle x_{v} d v, y_{v} d v, 0\right\rangle
\end{aligned}
$$

If we let $d A$ denote the area of the parallelogram spanned by $d \mathbf{x}$ and $d \mathbf{y}$, then $d A$ approximates the area of $T(R)$ for $d u$ and $d v$ sufficiently close to 0 .

The cross product of $d \mathbf{x}$ and $d \mathbf{y}$ is given by

$$
d \mathbf{x} \times d \mathbf{y}=\langle 0,0,| \begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}| \rangle d u d v
$$

from which it follows that

$$
\begin{equation*}
d A=\|d \mathbf{x} \times d \mathbf{y}\|=\left|x_{u} y_{v}-x_{v} y_{u}\right| d u d v \tag{2}
\end{equation*}
$$

Consequently, the area differential $d A$ is given by

$$
\begin{equation*}
d A=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{3}
\end{equation*}
$$

That is, the area of a small region in the $u v$-plane is scaled by the Jacobian determinant to approximate areas of small images in the $x y$-plane.

EXAMPLE 5 Find the Jacobian determinant and the area differential of $T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle$ at $(u, v)=(1,1)$, What is the approximate area of the image of the rectangle $[1,1.4] \times[1,1.2]$?

Solution: The Jacobian determinant is

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \\
& =(2 u)(2 u)-(-2 v)(2 v) \\
& =4 u^{2}+4 v^{2}
\end{aligned}
$$

Thus, the area differential is given by

$$
d A=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v=\left(4 u^{2}+4 v^{2}\right) d u d v
$$

On the rectangle $[1,1.4] \times[1,1.2]$, the variable u changes by $d u=0.4$ and v changes by $d v=0.2$. We evaluate the Jacobian at $(u, v)=$ $(1,1)$ and obtain the area

$$
d A=\left(4 \cdot 1^{2}+4 \cdot 1^{2}\right) \cdot 0.4 \cdot 0.2=0.32
$$

which is the approximate area in the $x y$-plane of the image of $[1,1.4] \times[1,1.2]$ under $T(u, v)$.

Let's look at another interpretation of the area differential. If the coordinate curves under a transformation $T(u, v)$ are sufficiently close together, then they form a grid of lines that are "practically straight" over short distances. As a result, sufficiently small rectangles in the $u v$-plane are mapped to small regions in the $x y$-plane that are practically the same as parallelograms.

Consequently, the area differential $d A$ approximates the area in the xy-plane of the image of a rectangle in the uv-plane as long as the rectangle in the uv-plane is sufficiently small.

EXAMPLE 6 Find the Jacobian determinant and the area differential for the polar coordinate transformation. Illustrate using the image of a "grid" of rectangles in polar coordinates.

Solution: Since $x=r \cos (\theta)$ and $y=r \sin (\theta)$, the Jacobian determinant is

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(r, \theta)} & =\frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta}-\frac{\partial x}{\partial \theta} \frac{\partial y}{\partial r} \\
& =\cos (\theta) r \cos (\theta)--r \sin (\theta) \sin (\theta) \\
& =r\left[\cos ^{2}(\theta)+\sin ^{2}(\theta)\right] \\
& =r
\end{aligned}
$$

Thus, the area differential is $d A=r d r d \theta$.
Geometrically, "rectangles" in polar coordinates are regions between circular arcs away from the origin and rays through the origin. If the distance changes from r to $r+d r$ for $r>0$ and some small $d r>0$, and if the polar angle changes from θ to $\theta+d \theta$ for some small angle $d \theta$, then the region covered is practically the same as a small rectangle with height $d r$ and width $d s$, which is the distance from θ to $\theta+d \theta$ along a circle of radius r.

If an arc subtends an angle $d \theta$ of a circle of radius r, then the length of the arc is $d s=r d \theta$. Thus,

$$
d A=d r d s=r d r d \theta
$$

Check your Reading: Do "rectangles" in polar coordinates resemble rectangles if r is arbitrarily close to 0 ?

The Inverse Function Theorem

Recall taht if a coordinate transformation T maps an open region U in the $u v$ plane to an open region V in the $x y$-plane, then T is 1-1 if each point in V is the image of only one point in U.

Additionally, if every point in V is the image under $T(u, v)$ of at least one point in U, then $T(u, v)$ is said to map U onto V.

If $T(u, v)$ is a 1-1 mapping of a region U in the $u v$-plane onto a region V in the $x y$-plane, then we define the inverse transformation of T from V onto U by

$$
T^{-1}(x, y)=(u, v) \quad \text { only if } \quad(x, y)=T(u, v)
$$

The Jacobian determinant can be used to determine if T has an inverse transformation T^{-1} on at least some small region about a given point.

Inverse Function Theorem: Let $T(u, v)$ be a coordinate transformation on an open region S in the $u v$-plane and let (p, q) be a point in S. If

$$
\left.\frac{\partial(x, y)}{\partial(u, v)}\right|_{(u, v)=(p, q)} \neq 0
$$

then there is an open region U containing (p, q) and an open region V containing $(x, y)=T(p, q)$ such that T^{-1} exists and maps V onto U.
image

The proof of the inverse function theorem follows from the fact that the Jacobian matrix of $T^{-1}(x, y)$, when it exists, is given by the inverse of the Jacobian of T,

$$
J^{-1}(x, y)=\left(\frac{\partial(x, y)}{\partial(u, v)}\right)^{-1}\left[\begin{array}{cc}
y_{v} & -x_{v} \\
-y_{u} & x_{u}
\end{array}\right]
$$

which features a Jacobian determinant with a negative power. Thus, J^{-1} exists only if the determinant of $J(u, v)$ is non-zero.

EXAMPLE $7 \quad$ Where is $T(r, \theta)=\langle r \cos (\theta), r \sin (\theta)\rangle$ invertible?

Solution: The Jacobian determinant for polar coordinates is

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=r
$$

which is non-zero everywhere except the origin. Thus, at any point $\left(r_{0}, \theta_{0}\right)$ with $r_{0}>0$, there is an open region U in the $r \theta$-plane and an open region V containing $(x, y)=\left(r_{0} \cos \left(\theta_{0}\right), r_{0} \sin \left(\theta_{0}\right)\right)$ such that $T^{-1}(x, y)$ exists and maps V onto U.

We will explore the result in example 7 more fully in the exercises. In particular, we will show that

$$
T^{-1}(x, y)=\left\langle\sqrt{x^{2}+y^{2}}, 2 \tan ^{-1}\left(\frac{y}{x+\sqrt{x^{2}+y^{2}}}\right)\right\rangle
$$

Clearly, T^{-1} is not defined on any open region containing (0,0). Also, if $y=0$ and $x>0$, then

$$
2 \tan ^{-1}\left(\frac{0}{x+\sqrt{x^{2}+0^{2}}}\right)=2 \tan ^{-1}\left(\frac{0}{x+|x|}\right)=0
$$

But if $y=0$ and $x<0$, then

$$
2 \tan ^{-1}\left(\frac{0}{x+\sqrt{x^{2}+0^{2}}}\right)=2 \tan ^{-1}\left(\frac{0}{x+|x|}\right)=2 \tan ^{-1}\left(\frac{0}{0}\right)
$$

That is, a different representation of T^{-1} must be used on any region which intersects the negative real axis.

Exercises

Find the velocity vector in the uv-plane to the given curve. Then find Jacobian matrix and the tangent vector at the corresponding point to the image of the curve in the $x y$-plane.

1. $T(u, v)=\langle u+v, u-v\rangle$ $u=t, v=t^{2}$ at $t=1$
2. $\quad T(u, v)=\langle 2 u+v, 3 u-v\rangle$
$u=t, v=t^{2}$ at $t=1$
3. $T(u, v)=\left\langle u^{2} v, u v^{2}\right\rangle$
$u=t, v=3 t$ at $t=2$
4. $\quad T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle$
$u=\cos (t), v=\sin (t)$ at $t=0$
5. $\quad T(u, v)=\langle u \sec (v), u \tan (v)\rangle$ $u=t, v=\pi$ at $t=1$
6. $\quad T(u, v)=\langle u \cosh (v), u \sinh (v)\rangle$
$u=t, v=t^{2}$ at $t=1$

Find the Jacobian determinant and area differential of each of the following transformations.
7. $T(u, v)=\langle u+v, u-v\rangle$
8. $T(u, v)=\langle u v, u-v\rangle$
9. $T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle$
10. $T(u, v)=\left\langle u^{3}-3 u v^{2}, 3 u^{2} v-v^{3}\right\rangle$
11. $T(u, v)=\left\langle u e^{v}, u e^{-v}\right\rangle$
12. $T(u, v)=\left\langle e^{u} \cos (v), e^{u} \sin (v)\right\rangle$
13. $T(u, v)=\langle 2 u \cos (v), 3 u \sin (v)\rangle$
14. $T(u, v)=\left\langle u^{2} \cos (v), u^{2} \sin (v)\right\rangle$
15. $T(u, v)=\left\langle e^{u} \cos (v), e^{-u} \sin (v)\right\rangle$
16. $\quad T(u, v)=\left\langle e^{u} \cosh (v), e^{-u} \sinh (v)\right\rangle$
17. $T(u, v)=\langle\sin (u) \sinh (v), \cos (u) \cosh (v)\rangle$
18. $T(u, v)=\langle\sin (u v), \cos (u v)\rangle$

In each of the following, sketch several coordinate curves of the given coordinate system to form a grid of "rectangles" (i.e., make sure the u-curves are close enough to appear straight between the v-curves and vice-versa. Find the area differential and discuss its relationship to the "coordinate curve grid". (19-22 are linear transformations and have a constant Jacobian determinant)
19. $T(u, v)=\langle 2 u, v\rangle$
21. $T(u, v)=\left\langle\frac{u-v}{\sqrt{2}}, \frac{u+v}{\sqrt{2}}\right\rangle$
23. parabolic coordinates
$T(u, v)=\left\langle u^{2}-v^{2}, 2 u v\right\rangle$
25. elliptic coordinates
$T(u, v)=\langle\cosh (u) \cos (v), \sinh (u) \sin (v)\rangle$
20. $T(u, v)=\langle u+1, v\rangle$
22. $T(u, v)=\left\langle\frac{u-\sqrt{3} v}{2}, \frac{\sqrt{3} u+v}{2}\right\rangle$
22. tangent coordinates
$T(u, v)=\left\langle\frac{u}{u^{2}+v^{2}}, \frac{v}{u^{2}+v^{2}}\right\rangle$
24. bipolar coordinates
$T(u, v)=\left\langle\frac{\sinh (v)}{\cosh (v)-\cos (u)}, \frac{\sin (u)}{\cosh (v)-\cos (u)}\right\rangle$

Some of the exercises below refer to the following formula for the inverse of the Jacobian:

$$
J^{-1}(x, y)=\left(\frac{\partial(x, y)}{\partial(u, v)}\right)^{-1}\left[\begin{array}{cc}
y_{v} & -x_{v} \tag{4}\\
-y_{u} & x_{u}
\end{array}\right]
$$

27. Find $T^{-1}(x, y)$ for the transformation

$$
T(u, v)=\langle u+v, u-v\rangle
$$

by letting $x=u+v, y=u-v$ and solving for u and v. Then find $J^{-1}(x, y)$ both (a) directly from $T^{-1}(x, y)$ and (b) from the formula (4).
28. Find $T^{-1}(x, y)$ for the transformation

$$
T(u, v)=\langle u+4, u-v\rangle
$$

Then find $J^{-1}(x, y)$ both (a) directly from $T^{-1}(x, y)$ and (b) from the formula (4).
29. At what points (u, v) does the coordinate transformation

$$
T(u, v)=\left\langle e^{u} \cos (v), e^{u} \sin (v)\right\rangle
$$

have an inverse? Can the same inverse be used over the entire $u v$-plane?
30. At what points (u, v) does the coordinate transformation

$$
T(u, v)=\langle u \cosh (v), u \sinh (v)\rangle
$$

have an inverse.
31. Show that if $T(u, v)=\langle a u+b v, c u+d v\rangle$ where a, b, c, d are constants (i.e., $T(u, v)$ is a linear transformation), then $J(u, v)$ is the matrix of the linear transformation $T(u, v)$.
32. Show that if $T(u, v)=\langle a u+b v, c u+d v\rangle$ where a, b, c, d are constants (i.e., $T(u, v)$ is a linear transformation), then

$$
\frac{\partial(x, y)}{\partial(u, v)}=a d-b c
$$

33. Show that if $f(u, v)$ is differentiable, then

$$
\frac{\partial(f, f)}{\partial(u, v)}=0
$$

34. Show that if $f(u, v)$ and $g(u, v)$ are differentiable and if k is constant, then

$$
\frac{\partial(k f, g)}{\partial(u, v)}=k \frac{\partial(f, g)}{\partial(u, v)}
$$

35. Explain why if $x>0$, then the inverse of the polar coordinate transformation is

$$
T^{-1}(x, y)=\left\langle\sqrt{x^{2}+y^{2}}, \quad \tan ^{-1}\left(\frac{y}{x}\right)\right\rangle
$$

36. The Jacobian Matrix of $(r, \theta)=T^{-1}(x, y)$ is

$$
K(x, y)=\left[\begin{array}{ll}
r_{x} & r_{y} \\
\theta_{x} & \theta_{y}
\end{array}\right]
$$

Find $K(x, y)$ for $T^{-1}(x, y)$ in exercise 35 , and then use polar coordinates to explain its relationship to

$$
J^{-1}(r, \theta)=\frac{1}{r}\left[\begin{array}{cc}
r \cos (\theta) & r \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

37. Show that if $x<0$, then the inverse of the polar coordinate transformation is

$$
T^{-1}(x, y)=\left\langle\sqrt{x^{2}+y^{2}}, \quad \pi+\tan ^{-1}\left(\frac{y}{x}\right)\right\rangle
$$

38. Use the following steps to show that if (x, y) is not at the origin or on the negative real axis, then

$$
T^{-1}(x, y)=\left\langle\sqrt{x^{2}+y^{2}}, \quad 2 \tan ^{-1}\left(\frac{y}{x+\sqrt{x^{2}+y^{2}}}\right)\right\rangle
$$

is the inverse of the polar coordinate transformation.
a. Verify the identity

$$
\tan (\phi)=\frac{\sin (2 \phi)}{1+\cos (2 \phi)}
$$

b. Let $\phi=\theta / 2$ in a. Multiply numerator and denominator by r.
c. Simplify to an equation in x, y, and θ.
39. The coordinate transformation of rotation about the origin is given by

$$
T(u, v)=\langle\cos (\theta) u+\sin (\theta) v,-\sin (\theta) v+\cos (\theta) u\rangle
$$

where θ is the angle of rotation. What is the Jacobian determinant and area differential for rotation through an angle θ ? Explain the result geometrically.
40. The coordinate transformation of scaling horizontally by $a>0$ and scaling vertically by $b>0$ is given by

$$
T(u, v)=\langle a u, b v\rangle
$$

What is its area differential? Explain the result geometrically.
41. A transformation $T(u, v)$ is said to be a conformal transformation if its Jacobian matrix preserves angles between tangent vectors. Consider that the vector $\langle 1,0\rangle$ is parallel to the line $r=\pi$ and that the vector $\langle 1,1\rangle$ is parallel to the line $r=\theta$. Also, notice that $r=\pi$ and $r=\theta$ intersect at $(r, \theta)=(\pi, \pi)$ at a 45° angle.

For $J(r, \theta)$ for polar coordinates, calculate

$$
\mathbf{v}=J(\pi, \pi)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \mathbf{w}=J(\pi, \pi)\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Is the angle between \mathbf{v} and \mathbf{w} a 45° angle? Is the polar coordinate transformation conformal?
42. Find the Jacobian and repeat exercise 41 for the transformation

$$
T(\rho, \theta)=\left\langle e^{\rho} \cos (\theta), e^{\rho} \sin (\theta)\right\rangle
$$

43. Write to Learn: Write a short essay in which you calculate the area differential of the transformation $T(\rho, \theta)=\left\langle e^{\rho} \cos (\theta), e^{\rho} \sin (\theta)\right\rangle$ both computationally and geometrically.
44. Write to Learn: A coordinate transformation $T(u, v)=\langle f(u, v), g(u)$, is said to be area preserving if the area of the image of any region R in the $u v$ plane is the same as the area of R. Write a short essay which uses the area differential to explain why a rotation through an angle θ is area preserving.
45. Proof of a Simplified Inverse Function Theorem: Suppose that the Jacobian determinant of $T(u, v)=\langle f(u, v), g(u, v)\rangle$ is non-zero at a point (p, q) and suppose that $\mathbf{r}(t)=\langle p+m t, q+n t\rangle, t$ in $[-\varepsilon, \varepsilon]$, is a line segment in the $u v$-plane (m and n are numbers). Explain why if ε is sufficiently close to 0 , then there is a 1-1 correspondence between the segment $\mathbf{r}(t)$ and its image $T(\mathbf{r}(t)), t$ in $[-\varepsilon, \varepsilon]$. (Hint: first show that $x(t)=f(p+m t, q+n t)$ is monotone in t for t in $[-\varepsilon, \varepsilon]$).
46. Write to Learn: Let $T(u, v)=\langle x(u, v), y(u, v)\rangle$ be differentiable at $\mathbf{p}=(p, q)$ and assume that its Jacobian matrix is of the form

$$
J=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

By letting $\mathbf{u}=\langle p+h, q\rangle$ in definition 5.1, (so that $\mathbf{u}-\mathbf{p}=\left[\begin{array}{ll}h & 0\end{array}\right]^{t}$ in matrix notation), show that

$$
\lim _{\mathbf{u} \rightarrow \mathbf{p}} \frac{|T(\mathbf{u})-T(\mathbf{p})-J(\mathbf{p})(\mathbf{u}-\mathbf{p})|}{\|\mathbf{u}-\mathbf{p}\|}=0
$$

is transformed into

$$
\lim _{h \rightarrow 0^{+}} \frac{\|\langle x(p+h, q)-x(p, q), y(p+h, q)-y(p, q)\rangle-\langle a h, c h\rangle\|}{h}=0
$$

Use this to show that $a=x_{u}$ and $c=y_{u}$. How would you find b and d ? Explain your derivations and results in a short essay.

