Exercises

Find the velocity vector in the uv-plane to the given curve. Then find Jacobian matrix and the tangent vector at the corresponding point to the image of the curve in the xy-plane.
1.
T( u,v) = á u+v,u-v ñ
2.
T( u,v) = á 2u+v,3u-v ñ
u = t, v = t2 at t = 1
u = t, v = t2 at t = 1
3.
T( u,v) = á u2v,uv2 ñ
4.
T( u,v) = á u2-v2,2uv ñ
u = t, v = 3t at t = 2
u = cos( t) , v = sin(t) at t = 0
5.
T( u,v) = á usec( v) ,utan(v) ñ
6.
T( u,v) = á ucosh( v) ,usinh( v) ñ
u = t, v = p at t = 1
u = t, v = t2 at t = 1

Find the Jacobian determinant and area differential of each of the following transformations.
 
7.
T( u,v) = á u+v,u-v ñ
 
8.
T( u,v) = á uv,u-v ñ
9.
T( u,v) = á u2-v2,2uv ñ
 
10.
T( u,v) = áu3-3uv2,3u2v-v3 ñ
11.
T( u,v) = á uev,ue-v ñ
 
12.
T( u,v) = á eucos( v) ,eusin( v) ñ
13.
T( u,v) = á 2ucos( v) ,3usin( v) ñ
 
14.
T( u,v) = áu2cos( v) ,u2sin( v) ñ
15.
T( u,v) = á eucos( v),e-usin( v) ñ
 
16.
T( u,v) = á eucosh( v) ,e-usinh( v) ñ
17.
T( u,v) = á sin( u) sinh(v) ,cos( u) cosh( v) ñ
 
18.
T( u,v) = á sin( uv) ,cos(uv) ñ
 

In each of the following, sketch several coordinate curves of the given coordinate system to form a grid of "rectangles" (i.e., make sure the u-curves are close enough to appear straight between the v-curves and vice-versa.  Find the area differential and discuss its relationship to the "coordinate curve grid". (19 - 22 are linear transformations and have a constant Jacobian determinant)
 
19.
T( u,v) = á 2u,v ñ
 
20.
T( u,v) = á u+1,v ñ
21.
T( u,v) =
 u-v
Ö2
,  u+v
Ö2

 
22.
T( u,v) =
 u3v
2
,  Ö3u+v
2

     
23.
parabolic coordinates
 
22.
tangent coordinates
 
T( u,v) = á u2-v2,2uv ñ
 
 
T( u,v) =
 u
u2+v2
,  v
u2+v2

     
25.
elliptic coordinates
 
24.
bipolar coordinates
 
T( u,v) = á cosh( u) cos(v) ,sinh( u) sin( v) ñ
 
 
T( u,v) =
 sinh( v)
cosh(v) -cos( u)
,  sin( u)
cosh(v) -cos( u)

 
  

 Some of the exercises below refer to the following formula for the inverse of the Jacobian:
  J-1( x,y)  =    ( x,y)
( u,v
-1
 

é
ê
ë
 
yv
-xv
-yu
xu
ù
ú
û
   
(4)

27.  Find T-1( x,y) for the transformation
T( u,v) = á u+v, u-v ñ
by letting x = u+v, y = u-v and solving for u and v.  Then find J-1(x,y) both (a) directly from T-1( x,y) and (b) from the formula (4).

28.  Find T-1( x,y) for the transformation
T( u,v) = á u+4, u-v ñ
Then find J-1( x,y) both (a) directly from T-1(x,y) and (b) from the formula (4).        

29. At what points ( u,v) does the coordinate transformation
T( u,v) = á eu cos(v),  eu sin(v) ñ
have an inverse? What is the inverse T-1(x,y)?  What is its Jacobian?

30. At what points ( u,v) does the coordinate transformation
T( u,v) = á ucosh(v), usinh(v) ñ
have an inverse. What is the inverse T-1(x,y)?  What is its Jacobian?

31. Show that if T( u,v) = áau+bv, cu+dv ñ where a,b,c,d are constants (i.e., T(u,v) is a linear transformation ), then J( u,v) is the matrix of the linear transformation T( u,v) .

32. Show that if T( u,v) = áau+bv, cu+dv ñ where a,b,c,d are constants (i.e., T(u,v) is a linear transformation ), then
  ( x,y)
( u,v)
= ad - bc

33. Show that if f( u,v) is differentiable, then
  ( f, f)
( u, v)
= 0

34. Show that if f( u,v) and g( u,v) are differentiable and if k is constant, then
   ( kf,g)
( u, v)
= k  ( f, g)
( u, v)
 

35.  Explain why if x > 0, then the inverse of the polar coordinate transformation is
T-1( x,y) =   
x2+y2
,  tan-1 æ
è
   y
x
ö
ø

 

36. The Jacobian Matrix of ( r,q) = T-1(x,y) is
K( x,y) = é
ê
ë
 
rx
ry
qx
qy
ù
ú
û
 
Find K( x,y) for T-1( x,y) in exercise 35, and then use polar coordinates to explain its relationship to
J-1( r,q) =  1
r
  é
ê
ë
 
rcos( q)
rsin( q)
-sin( q)
cos( q)
ù
ú
û
 

37. Show that if x < 0, then the inverse of the polar coordinate transformation is
T-1( x,y) =   
x2+y2
,  p + tan-1 æ
è
   y
x
ö
ø

 

38. Use the following steps to show that if ( x,y) is not at the origin or on the negative real axis, then
T-1( x,y) =
x2+y2
, 2tan-1 æ
ç
è
   y
x+
x2+y2

ö
÷
ø


 
is the inverse of the polar coordinate transformation. 

       a. Verify the identity
tan( f) =  sin( 2f)
1+cos(2f)
 

       b. Let f = q/2 in a. Multiply numerator and denominator by r.

       c. Simplify to an equation in x, y, and q.

39. The coordinate transformation of rotation about the origin is given by
T( u,v) = á cos(q) u + sin(q) v,  -sin(q) v + cos(q)u ñ
where q is the angle of rotation. What is the Jacobian determinant and area differential for rotation through an angle q? Explain the result geometrically.

40. The coordinate transformation of scaling horizontally by a > 0 and scaling vertically by b > 0 is given by
T( u,v) = á au, bv ñ
What is its area differential? Explain the result geometrically.

41. A transformation T(u, v) is said to be a conformal transformation if its Jacobian matrix preserves angles between tangent vectors. Consider that the vector á0, 1 ñ is parallel to the line r = p and that the vector á 1,1 ñ is parallel to the line r = q. Also, notice that r = p and r = q intersect at ( r,q) = ( p,p) at a 45° angle.

 

 

 

 

For J( r,q) for polar coordinates, calculate
v = J( p,p) é
ê
ë
 
0
1
ù
ú
û
  and  w = J( p,p) é
ê
ë
 
1
1
ù
ú
û
 
Is the angle between v and w a 45° angle? Is the polar coordinate transformation conformal?

42. Find the Jacobian and repeat exercise 41 for the transformation
T( r,q) = á er cos(q), er sin(q) ñ

43. Write to Learn: Write a short essay in which you calculate the area differential of the transformation T( r,q) = á ercos( q) ,ersin(q) ñ both computationally and geometrically.

44. Write to Learn: A coordinate transformation T( u,v) = á f( u,v) ,g( u,) ñ is said to be area preserving if the area of the image of any region R in the uv-plane is the same as the area of R. Write a short essay which uses the area differential to explain why a rotation through an angle q is area preserving.

45. Proof of a Simplified Inverse Function Theorem: Suppose that the Jacobian determinant of T( u,v) = á f(u,v), g(u,v) ñ is non-zero at a point ( p,q) and suppose that r( t) = á p+mt, q+nt ñ, t in [ -e,e] , is a line segment in the uv-plane (m and n are numbers). Explain why if e is sufficiently close to 0, then there is a 1-1 correspondence between the segment r( t) and its image T( r( t) ) , t in [-e,e] . (Hint: first show that x(t) = f( p+mt, q+nt) is monotone in t for t in [-e,e] ).

46. Write to Learn: Let T( u,v) = áx( u,v) ,y( u,v) ñ be differentiable at p = ( p,q) and assume that its Jacobian matrix is of the form
J = é
ê
ë
 
a
b
c
d
ù
ú
û
 
By letting u = á p+h, q ñ in definition 3.1, (so that u-p = [ h  0] t in matrix notation ), show that
 
lim
u® p 
   | T( u) - T( p-  J( p) ( u-p) |
|| u-p ||
= 0
is transformed into
 
lim
h® 0+ 
   || á x(p+h,q) -x( p,q),  y( p+h,q) - y( p,q) ñ - á ah, ch ñ | |
h
= 0
Use this to show that a = xu and c = yu. How would you find b and d? Explain your derivations and results in a short essay.