Polar Coordinates in Vector Form   

The fact that x = r cos(q) and y = r sin(q) implies that the graph of r = f( q) is parameterized by
r(q) =  f(q) á cos(q), sin(q) ñ
Thus, tangent vectors, curvature, normals, arclength, etcetera, for polar curves r = f(q) can be obtained by applying techniques and concepts in chapter 1 to r(q) .  

EXAMPLE 6

EXAMPLE 6    Find the pullback of x = 1 into polar coordinates. What is the velocity v for the pullback? What is significant about the result.    

Solution: To do so, we let x = rcos( q) , which corresponds to
rcos( q) = 1  or r = sec( q)
Thus, r( q) = sec( q) á cosq, sinq ñ = á 1, tan( q) ñ since secq = 1/cosq  and tan( q) = sin( q) sec(q) .  Consequently,
v =  d
dq
r =  d
dq
á1,tan( q) ñ = á 0,sec2(q) ñ
Equivalently, v = sec2(q) á0,1 ñ = sec2( q) j.  That is, the direction is constant (i.e., along the line x = 1 ), but the speed is not ( v = sec2( q) ).

If we let er = á cos( q),sin( q) ñ , then the parameterization of a polar curve is given by
r(q) =  r(q)  er
It follows that the velocity of r(q) is
v( q)
=
é
ë
 d
dq
r( q) ù
û
  á cos( q) ,sin(q) ñ +r( q)  d
dq
á cos( q) ,sin( q) ñ
=
r' (q)  er   +   r(q)  á -sin(q), cos(q) ñ
(1)
If we let eq = á -sin(q), cos(q) ñ,  then (1) becomes
v( q) = r' er+r eq

The vectors er and eq are unit vectors that satisfy er · eq = 0.  Thus, for each value of q, the vectors er and eq form an orthonormal basis in polar coordinates, much like the vectors i = ex and j = ey do in Cartesian coordinates. However, as we move from point-to-point in the plane, the er and eq vectors change direction whereas the ex and ey vectors do not.
LiveGraphics3d Applet
Drag the red dots. The er and eq have different  directions
at different points, but ex and ey have fixed directions.
This reflects the fact that Cartesian coordinates are formed by 2 families of parallel lines, while polar coordinates are not.


EXAMPLE 7    Sketch the graph of r = 2sin( 3q) .  What is the slope of the tangent line to the curve at q = p/6?

Solution: When q = 0 or q = p/3, then r = 2sin( 0) = 2sin( p) = 0. Thus, the graph of r = 2sin( 3q) forms a single loop for q in [ 0,p/3] . It then follows that it forms another loop when q is in [ p/3,2p/3] and yet another loop for q in [2p/3,p] .
Substituting r = 2sin( 3q) into the parameterization yields
r( q) = 2sin( 3q) er
which has a derivative of
v(q)
=
 d
dq
( 2 sin(3q) er)
=
6cos(3q) e+  2sin(3q) eq
since der/dq = eq.  Thus, at q = p/6 we have
v æ
è
 p
6
ö
ø
= 6cos æ
è
 p
2
ö
ø
er+2sin æ
è
 p
2
ö
ø
eq = 0+2eq
Evaluating eq = á -sinq,cosq ñ at q = p/6  leads to
eq =
 -1
2
,  Ö3
2

so that p>
v æ
è
 p
6
ö
ø
= 2
 -1
2
,  Ö3
2
= á -1,Ö3 ñ
Thus, the tangent line has a slope of m = 3.

             

Alternatively, in example 7, we could have used the expanded form
r( q) = 2sin( 3q)   ácosq, sinq ñ
when determining v.  The basis notation er, eq is simply a more compact method for doing same thing.  

    Check Your Reading: How did we obtain m = 3 from the velocity vector in example 7?