The Chain Rule

The Chain Rule

In this section, we generalize the chain rule to functions of more than one
variable. In particular, we will show that the product in the single-variable
chain rule extends to an inner product in the general case.

To begin with, suppose that C is a curve in the zy-plane with a smooth
parametrization x (t) = (z (¢),y (¢)), ¢ in [a, b] , and suppose that f (x) is differ-
entiable at each point on C. In the last part of the previous section, we saw that
Definition 5.1b implies that on some neighborhood of 0, there is a continuous
function ¢ (Ax) with € (0) = 0 such that

|Af = Vf-Ax| < e (Ax) [|Ax]|

If we now suppose that Ax = x (¢t + At) — x (¢) for some small nonzero change

At in the parameter, then
‘ Af Ax Ax

e (Ax) AL

If At approaches 0, then Az also approaches 0 and so

Af
At

Ax
< -
A, ( (Ax) |15y

The Chain Rule: If x(¢) is differentiable at each point ¢ in an
interval [a,b], and if f (x) is differentiable at each x (t), ¢ in [a, b],
then

lim
At—0

-V =

)

which leads to
df
dt

Since € (0) = 0, this implies that following:

fo

df dx
w -V w

Alternatively, the chain rule can be written as

d
SIw) =1 (1)

where v = x’ (¢) is the velocity vector of x (¢). Also, if we let df /dx denote the
gradient Vf (i.e., df /dx = Vf ) then the chain rule can be writtten in the form
df  df dx

dt — dx dt

which is reminiscent of the chain rule for functions of a single variable.



EXAMPLE 1 Evaluate df /dt using (1) given that f (z,y) = 2% —?>
and x (t) = (sin (¢), cos (¢))

Solution: Since Vf = (2z, —2y) and
v =x'(t) = (cos (t),, —sin (t))
the chain rule (1) implies that

df
% = Vf %
(22, =2y) - (cos (t) , —sin (1))
= 2zcos(t) + 2ysin (1)
However, x (t) = (sin (¢),cos (t)) implies that = sin (¢) and y =
cos (t), so that

df . ] :

< = 2sin(t)cos () +2cos (t) sin (¢)
= 4sin(t)cos (t)
= 2sin(2t)

Similarly, if w = U (z,y, 2) and r (t) = (z (t),y (t), 2 (t)) is a curve in R3, then

we let w = U (r) and let
oU oU oU
VU= <ax Ty’ a>
be the gradient of U, so that the chain rule for 3 variables can be written
dau dr
VU w

EXAMPLE 2 Evaluate dU/dt using (1) given that
Ul(z,y,2) = ay+2°
and r (¢) = (€', e, 13).

Solution: Since VU = (y,z,2z) and r’ = (e, —e*,3t?) , the chain
rule says that

dU dr
w - Va
= (y,x,2z) - <et, —e ¢, 3t2>

= ye! —ze ! 4 621>



Since z = ef, y = e ?, and z = 3, we have
b b b

dU
a = e tel — ete™ 4+ 6632 = 6¢°

Check your Reading: How many trig identities did we use in example 17

The Chain Rule in Non-Vector Form

Since Vf = (fy, fy), the expression Vf - v can be written as

dr dy

_ de dy\ _ , dv dy
Vf'v_<f°”’f"">'<dt’dt>_f9"dt vy

Thus, the chain rule can also be written as follows:

The Chain Rule(non-vector form): Suppose that z (¢) and
y (t) are differentiable at to and that f(x,y) is differentiable at
(x(to),y(to)). If w = f(z,y), then w(¢) is differentiable at tg
and

dw _0fdv  0f dy
dt Oz dt = Oy dt
where dw/dt = w' (1) .

Equivalently, the chain rule produces the same derivative dw/dt that we would
obtain directly by substituting for = and y in f (x,y) and differentiating with
respect to t.

EXAMPLE 3 Find dw/dt given that w = 2% 4+ y3 and that z = ¢3,
y =t

Solution: The first partial derivatives of w = 2% 4+ > are

ow ow
— =2 — =3y’
oz o Oy 4
As a result, the chain rule says that
dw dx dy
22— 9= 229
dt a T

2z (3t%) + 3y° (5t*)
= 2t%(3t%) 4 3t"% (5t*)
6t” + 15t



Notice that we would have obtained the same result if we had sub-
stituted ) 5

w= ()" + (£°)" =t° + "
and then calculated dw/dt.

Likewise, if w = f (z,y, z) where z, y, and z are functions of ¢, then
dw_0fde 0fdy  0fd:
dt — Oxdt Oydt 0zdt

if x and y are differentiable at to and f (x,y) is differentiable at (x (to) ,y (t0)) .

EXAMPLE 4 Find dw/dt given that w = cos(zy) + z and that
z=mel, y=e"? and z = >

Solution: The first partial derivatives are

ow . ow . ow
B = —ysin (zy), e —zsin (zy) , 5 = 1

As a result, the chain rule says that

dw dx dy dz

i —ysin (zy) p — xsin (zy) o + I

and since dz/dt = we! | dy/dt = —e™!, and dz/dt = 2t, we have

%{: = —etsin (wete*t) (wet) — el sin (wete*t) (fe*t) + 2t
—mete tsin (ﬂ'ete_t) + metetsin (ﬂete_t) + 2t
—msin (7) + wsin (7) + 2t

2t

Check your Reading: Substitute z = me! , y = e, and 2z = t? into w =

cos (zy) + z to reveal another reason why we should have dw/dt = 2t in example
4.

The Chain Rule for Partial Derivatives

If w= f(x,y) and if x and y are functions of variables u and v, then the chain
rule yields

ow awaj 8w@ and 8w_8w8£ 8w@

0 oz ov oy o

9u " 9z ou ' oy ou



That is, the chain rule for partial derivatives is a natural extension of the chain
rule for ordinary derivatives.

EXAMPLE 5 Find dw/0u and dw/dv when w = 2% + xy and

x = u?v, y = uw?.

Solution: To begin with, the first partial derivatives of w = z2+xy
are

ow 9 + ow
a_ = 4T 9 =X,
oz Y Jy
while the partial derivatives of z and y with respect to u are
ox Oy 9
_— = 2 _— =
ou I
As a result, the chain rule says that
ow ox dy
(2 hutid hid
ou (x+y)8u+m8u
Substitution for x, y and their derivatives yields
ow 2 2 2 2
B (2u v+ uv )2uv—|—u U(U )
u

= 4u30® + 3u?

To evaluate dw/9dv, we substitute the first partial derivatives to

obtain 9 9 9
w x Y
(2 huind hi
v (x+y)8v+mt9v
The partial derivatives of z and y with respect to v are
Ox 5 Oy
—_— = _— = 2
w0 w

so that substitution for x, y and their derivatives yields

ow
ov

= (2¢®v 4+ uw?) u® + v (2u)

= 2u*v 4+ 3u?
3,3

Check your Reading: Explain why w = v*v? +u

Applications



The chain rule is often used to prove theorems and develop new techniques.
For example, if a curve g (z,y) = k implicitly defines y as a function of x, then
x =t, y = f(t) for some unknown function f (¢). Thus,

d d
il - —k
dtg(x,y) o
dx dy
TS —-— =0
Je'qe T 9 g
df
T — =0

If we let y' = df /dt, then g,y = —g, and

;T Yz
y = —=
9y

That is, implicit differentiation is an application of the chain rule.

EXAMPLE 6 Find g/ if y is implicitly defined to be a function of
z and

2?4yt =1

Solution: Let g (z,y) = 2%+ y*. Then g, = 2z and g, = 2y and

, —Gx —2x -z
Yy =——-=—-=—
Gy 2y Yy

In many applications, we are asked to consider functions of the form

p(t)
w (t) =/ g (u.q (1)) du

To find dw/dt, we often let © = p(t) and y = ¢ (¢) and then apply the chain rule
to

w:/ g (u,y) du

To find wy, we will assume that the derivative with respect to y can be moved
into the integrand (see exercise 35).

EXAMPLE 7 Find dw/dt given

t
w :/ sin (u2 +t2) du
0



Solution: To begin with, we define

x
w:/ sin(u2—|—y)du
0
where z = ¢ and y = t2. The first partial with respect to x is

% = Bam/o sin(u2+y)duzsin(x2+y)
Differentiating under the integral yields
ow

Ty = ay/o sin(u2+y)du

0
= /O agysin(uz—ky)du

= / cos (u2 + y) du

0
Since 2’ (t) = 1 and ¥’ (¢t) = 2¢, the chain rule then yields

o dwds  Owdy
dt Oz dt Oy dt

d r d
= sin (2% +y) d—er </0 cos(u2+y)du) c%
Substituting z = ¢, y = t2, 2’ = 1, and ¢y’ = 2t yields

¢
w' (t) = sin (2¢%) + 2t/ cos (u® +t%) du
0

Exercises
Find the specified derivative(s) using the chain rule:
1. % if w = 2%y? and 2. % if w = 23y and
=t y=1° r=t y=1t?
3. %’ if w = 2% 4+ y? and 4. ‘fi—’f if w=2%—y?and
x =cos(t), y =sin(t) x = cosh (t), y = sinh (¢)
5. %} if w = zyz and 6. % if w=22— zy? and
r=¢e,y=et z=1° x=sec(t),y=tan(t), 2 =1
7. %’ if w=2%4 22y + 23 and 8. (il—';’ if w = 23y%2z and
x=cos(t),y=sin(t),z=t r=c,y=et z=c7t
9. 4 ifw=tan"! (¥) and 10. % if w =sin™' (2y) and
x =sin(t), y = cos (t) x =cos(t), y = tan (¢)



1. 9w 95 gy — 22 4y and 12. G50 ifw=asin(y) and

z=u*v,y=(utv)’ = 2uv, y = u? — v?
13. 9w 9w if 4 = sin (z) cot (y) 14. dw 9w if o = sin (zy) €™
r=sin"" (w), y = tan~ ! (uv) r=uw lln(),y=u"tv
15. %7%} if w = u? +v? and 16. %7% if w=u? +v* and
u = %67362/(4’&)7 v = %6’712/(2” u=sin(z —ct), v=cos(z — ct)
7. F'(t) ifF(t fo sin (u*t) du 18.  F'(t) ifF(t f e~ tdy
9. F(t) if F( ) T sin (u — t) dt 20.  F'(t) if F( ) = [y srmdu

Compute Vf and then use it to compute df /dt using the vector form of the
chain rule.

21, f(z,y) = z? +y 22. f(z,y) = .’£3y2
r(t) = (12, t3> r(t) = (t2,t3)

23, f(z,y) = 2% + 22y + 22 24, f(x,y) = 23y>2
r (t) = (cos (t),sin (t),t) r(t) = (et et e )

25.  f(x,y) = zzcos(y) 26.  f(z,y)=tan"t (¥) + 2
r(t) = (sin (), t, csc (2t)) r(t) = (cos (t),sin (t),t)

27. Find y’ given that y is implicitly defined as a function of x by
2?4 y? =2y +1
28. Find 3’ given that y is implicitly defined as a function of x by
xsin (zy) = y?

29. Compute dw/dt for w = x? — y* x = cos(t), y = sin (¢) in two different
ways:

1. (a) By substituting = cos (t), y = sin (¢) into w = 22 — y?, simplifying,
and computing the derivative.

(b) By using the chain rule for two variables, and then simplifying.

30. Compute dw/dt for w = x® + zy?, * = cos (t), y = sin (¢) in two different
ways:

1. (a) By substituting 2 = cos (t), y = sin () into w = x3+2y?, simplifying,
and computing the derivative.

(b) By using the chain rule for two variables, and then simplifying.

31. Prove that the derivative of a sum is the sum of the derivatives by applying
the chain rule for 2 variables to

w=x+y

where z = f (¢t) and y = g (t) .



32. Prove that if w = f (r) where r = (g (u,v), h (u,v)), then
ow df Or ow df Or

u  dr du v dr O’
33. Prove the product rule by applying the chain rule for 2 variables to
w=xy

where z = f (¢t) and y = g (t) .
34. Prove the quotient rule by applying the chain rule for 2 variables to

x
w=—
Y
where z = f (¢t) and y = g (t) .
35. Suppose that K (z,u) is differentiable in z and suppose that for all ¢ > 0,
there is a interval (p, ¢) such that if z is in (p, ¢), then

K(z+hyu) — K (z,u)
h

— K, (z,u)| <e (2)

independent of u. Show that

d [ b OK
%/a K(:c,u)duf/a %(az,u)du

1. (a) Let f(x) = f; K (x,u) du and show that

f(x—&—hf)b—f(:zc) _/ub(K(ac—i—h,u})L—K(m,u))du

(b) Show that if z is in (p,q) where (p,q) is an interval on which (2)
holds, then

- | —(z,u)du

'f(w+hf)L—f(x) %f; <elb—a)

What does this imply about f’ (z)?

36. This exercise uses 2 different methods to differentiate the indefinite integral

t
F(t) :/ e“"tdu
0

1. (a) Find F’ (¢) using the chain rule for functions of 2 variables.

(b) Write F (t) as the product of two functions of ¢ and apply the product
rule. Is the result the same in both cases?



37. Show that the convolution function

v0)= [ s

is a solution to ¥’ —y = f(¢).
38. Show that the convolution function

y(t):/O sin (¢t — u) f (u) du

is a solution to y”" +y = f(t).
39. If N (t) is the population of a certain bacteria colony at time ¢, then

proportion of the the accumulation of
N (t) = initial population + those born in [0,¢] who
that survives to time ¢ who survive to time ¢

If P (t) is the probability that an individual born at time 0 will survive to age ¢,
then NoP (t) is the proportion who survive to time ¢. If b is the intrinsic birth
rate, then bN (¢) At is the number of births from time ¢ to time ¢ + At for At
small.

a. Explain why P (¢ — 7) is the probability that an individual born at time
7 will survive to time ¢, and use this to explain why the population can be
modeled by

N(t):P(t)NO—i—/Oth(T)P(t—T)dT (3)

b. Differentiate both sides of (3) to find an equation for N’ (¢).
c. Show that if P (t) = e~ where v > 0 is constant, then what separable
differential equation does b reduce to?
40. Repeat exercise 39 given that the number of births from time ¢ to time
t+ At is
DN (1) (K — N (1))

where K is a constant known as the carrying capacity for the population.
41. Show that if f = f (g,h) where g = g (z,y) and h = h(z,y), then

Vf=f:Vg+ f,Vh
40. Show that if z = f (z (¢),y (¢)), then

d?z dz\? dx dy dy 2

e = I (w) 2y (dt> (dt)”w <dt>
d’z d?y
gz T hige

43. Suppose that z = f (z,y) and that £ = p+ mt and y = ¢+ nt, where m, n,
p, and q are constants. Show that

2 (t) =mfs +nfy and 2 () = feam?® + 2mnfey, + fyun?

10



44. A function f (z,y) is said to be homogeneous of degree n if

[tz ty) =" f (z,y) (4)

for all real numbers t. For example, f (z,y) = z3 + 3xy? is homogeneous of
degree 3 since

fte,ty) = (to)’ +3(t2) (ty)°
= 322 + 33297
£ f (z,y)
Show that if a differentiable function f (x,y) is homogeneous of degree n, then
of of
Tor + 9871 =nf(z,y)

(hint: Differentiate both sides of (4) with respect to t—use the chain rule to
differentiate f (tz,ty)—and then let ¢ = 1).
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