
The Chain Rule

The Chain Rule
In this section, we generalize the chain rule to functions of more than one

variable. In particular, we will show that the product in the single-variable
chain rule extends to an inner product in the general case.
To begin with, suppose that C is a curve in the xy-plane with a smooth

parametrization x (t) = hx (t) ; y (t)i ; t in [a; b] ; and suppose that f (x) is di¤er-
entiable at each point on C: In the last part of the previous section, we saw that
De�nition 5.1b implies that on some neighborhood of 0, there is a continuous
function " (�x) with " (0) = 0 such that

j�f �rf ��xj < " (�x) k�xk

If we now suppose that �x = x (t+�t)� x (t) for some small nonzero change
�t in the parameter, then�����f�t �rf � �x�t

���� < " (�x)�x�t


If �t approaches 0, then �x also approaches 0 and so

lim
�t!0

�����f�t �rf � �x�t
���� � lim

�t!0

�
" (�x)

�x�t
�

which leads to ����dfdt �rf � dxdt
���� � " (0)dxdt


Since " (0) = 0; this implies that following:

The Chain Rule: If x (t) is di¤erentiable at each point t in an
interval [a; b] ; and if f (x) is di¤erentiable at each x (t), t in [a; b] ;
then

df

dt
= rf � dx

dt

Alternatively, the chain rule can be written as

d

dt
f (r) = rf � v (1)

where v = x0 (t) is the velocity vector of x (t) : Also, if we let df=dx denote the
gradient rf (i.e., df=dx = rf ) then the chain rule can be writtten in the form

df

dt
=
df

dx
� dx
dt

which is reminiscent of the chain rule for functions of a single variable.
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EXAMPLE 1 Evaluate df=dt using (1) given that f (x; y) = x2�y2
and x (t) = hsin (t) ; cos (t)i

Solution: Since rf = h2x;�2yi and

v = x0 (t) = hcos (t) ;� sin (t)i

the chain rule (1) implies that

df

dt
= rf � v

= h2x;�2yi � hcos (t) ;� sin (t)i
= 2x cos (t) + 2y sin (t)

However, x (t) = hsin (t) ; cos (t)i implies that x = sin (t) and y =
cos (t) ; so that

df

dt
= 2 sin (t) cos (t) + 2 cos (t) sin (t)

= 4 sin (t) cos (t)

= 2 sin (2t)

Similarly, if w = U (x; y; z) and r (t) = hx (t) ; y (t) ; z (t)i is a curve in R3, then
we let w = U (r) and let

rU =
�
@U

@x
;
@U

@y
;
@U

@z

�
be the gradient of U; so that the chain rule for 3 variables can be written

dU

dt
= rU � dr

dt

EXAMPLE 2 Evaluate dU=dt using (1) given that

U (x; y; z) = xy + z2

and r (t) =


et; e�t; t3

�
:

Solution: Since rU = hy; x; 2zi and r0 =


et;�e�t; 3t2

�
; the chain

rule says that

dU

dt
= rU � dr

dt

= hy; x; 2zi �


et;�e�t; 3t2

�
= yet � xe�t + 6zt2
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Since x = et; y = e�t; and z = t3; we have

dU

dt
= e�tet � ete�t + 6t3t2 = 6t5

Check your Reading: How many trig identities did we use in example 1?

The Chain Rule in Non-Vector Form

Since rf = hfx; fyi, the expression rf � v can be written as

rf � v = hfx; fyi �
�
dx

dt
;
dy

dt

�
= fx

dx

dt
+ fy

dy

dt

Thus, the chain rule can also be written as follows:

The Chain Rule(non-vector form): Suppose that x (t) and
y (t) are di¤erentiable at t0 and that f (x; y) is di¤erentiable at
(x (t0) ; y (t0)) : If w = f (x; y) ; then w (t) is di¤erentiable at t0
and

dw

dt
=
@f

@x

dx

dt
+
@f

@y

dy

dt

where dw=dt = w0 (t0) :

Equivalently, the chain rule produces the same derivative dw=dt that we would
obtain directly by substituting for x and y in f (x; y) and di¤erentiating with
respect to t:

EXAMPLE 3 Find dw=dt given that w = x2+ y3 and that x = t3;
y = t5:

Solution: The �rst partial derivatives of w = x2 + y3 are

@w

@x
= 2x;

@w

@y
= 3y2

As a result, the chain rule says that

dw

dt
= 2x

dx

dt
+ 3y2

dy

dt

= 2x
�
3t2
�
+ 3y2

�
5t4
�

= 2t3
�
3t2
�
+ 3t10

�
5t4
�

= 6t5 + 15t14
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Notice that we would have obtained the same result if we had sub-
stituted

w =
�
t3
�2
+
�
t5
�3
= t6 + t15

and then calculated dw=dt:

Likewise, if w = f (x; y; z) where x; y, and z are functions of t; then

dw

dt
=
@f

@x

dx

dt
+
@f

@y

dy

dt
+
@f

@z

dz

dt

if x and y are di¤erentiable at t0 and f (x; y) is di¤erentiable at (x (t0) ; y (t0)) :

EXAMPLE 4 Find dw=dt given that w = cos (xy) + z and that
x = �et, y = e�t; and z = t2

Solution: The �rst partial derivatives are

@w

@x
= �y sin (xy) ; @w

@y
= �x sin (xy) ; @w

@z
= 1

As a result, the chain rule says that

dw

dt
= �y sin (xy) dx

dt
� x sin (xy) dy

dt
+
dz

dt

and since dx=dt = �et , dy=dt = �e�t; and dz=dt = 2t; we have

dw

dt
= �e�t sin

�
�ete�t

� �
�et
�
� �et sin

�
�ete�t

� �
�e�t

�
+ 2t

= ��ete�t sin
�
�ete�t

�
+ �ete�t sin

�
�ete�t

�
+ 2t

= �� sin (�) + � sin (�) + 2t
= 2t

Check your Reading: Substitute x = �et , y = e�t; and z = t2 into w =
cos (xy)+z to reveal another reason why we should have dw=dt = 2t in example
4.

The Chain Rule for Partial Derivatives

If w = f (x; y) and if x and y are functions of variables u and v; then the chain
rule yields

@w

@u
=
@w

@x

@x

@u
+
@w

@y

@y

@u
and

@w

@v
=
@w

@x

@x

@v
+
@w

@y

@y

@v
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That is, the chain rule for partial derivatives is a natural extension of the chain
rule for ordinary derivatives.

EXAMPLE 5 Find @w=@u and @w=@v when w = x2 + xy and
x = u2v; y = uv2:

Solution: To begin with, the �rst partial derivatives of w = x2+xy
are

@w

@x
= 2x+ y;

@w

@y
= x;

while the partial derivatives of x and y with respect to u are

@x

@u
= 2uv;

@y

@u
= v2

As a result, the chain rule says that

@w

@u
= (2x+ y)

@x

@u
+ x

@y

@u

Substitution for x; y and their derivatives yields

@w

@u
=

�
2u2v + uv2

�
2uv + u2v

�
v2
�

= 4u3v2 + 3u2v3

To evaluate @w=@v; we substitute the �rst partial derivatives to
obtain

@w

@v
= (2x+ y)

@x

@v
+ x

@y

@v

The partial derivatives of x and y with respect to v are

@x

@v
= u2;

@y

@v
= 2uv

so that substitution for x; y and their derivatives yields

@w

@v
=

�
2u2v + uv2

�
u2 + u2v (2uv)

= 2u4v + 3u3v2

Check your Reading: Explain why w = u4v2 + u3v3

Applications
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The chain rule is often used to prove theorems and develop new techniques.
For example, if a curve g (x; y) = k implicitly de�nes y as a function of x; then
x = t; y = f (t) for some unknown function f (t) : Thus,

d

dt
g (x; y) =

d

dt
k

gx
dx

dt
+ gy

dy

dt
= 0

gx + gy
df

dt
= 0

If we let y0 = df=dt; then gyy0 = �gx and

y0 =
�gx
gy

That is, implicit di¤erentiation is an application of the chain rule.

EXAMPLE 6 Find y0 if y is implicitly de�ned to be a function of
x and

x2 + y2 = 1

Solution: Let g (x; y) = x2 + y2: Then gx = 2x and gy = 2y and

y0 =
�gx
gy

=
�2x
2y

=
�x
y

In many applications, we are asked to consider functions of the form

w (t) =

Z p(t)

a

g (u; q (t)) du

To �nd dw=dt; we often let x = p (t) and y = q (t) and then apply the chain rule
to

w =

Z x

a

g (u; y) du

To �nd wy; we will assume that the derivative with respect to y can be moved
into the integrand (see exercise 35).

EXAMPLE 7 Find dw=dt given

w =

Z t

0

sin
�
u2 + t2

�
du
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Solution: To begin with, we de�ne

w =

Z x

0

sin
�
u2 + y

�
du

where x = t and y = t2: The �rst partial with respect to x is

@w

@x
=
@

@x

Z x

0

sin
�
u2 + y

�
du = sin

�
x2 + y

�
Di¤erentiating under the integral yields

@w

@y
=

@

@y

Z x

0

sin
�
u2 + y

�
du

=

Z x

0

@

@y
sin
�
u2 + y

�
du

=

Z x

0

cos
�
u2 + y

�
du

Since x0 (t) = 1 and y0 (t) = 2t; the chain rule then yields

dw

dt
=

@w

@x

dx

dt
+
@w

@y

dy

dt

= sin
�
x2 + y

� dx
dt
+

�Z x

0

cos
�
u2 + y

�
du

�
dy

dt

Substituting x = t; y = t2, x0 = 1; and y0 = 2t yields

w0 (t) = sin
�
2t2
�
+ 2t

Z t

0

cos
�
u2 + t2

�
du

Exercises
Find the speci�ed derivative(s) using the chain rule:

1. dw
dt if w = x2y2 and 2. dw

dt if w = x3y and
x = t4; y = t5 x = t; y = t2

3. dw
dt if w = x2 + y2 and 4. dw

dt if w = x2 � y2 and
x = cos (t) ; y = sin (t) x = cosh (t) ; y = sinh (t)

5. dw
dt if w = xyz and 6. dw

dt if w = x2 � zy2 and
x = et; y = e�t; z = t5 x = sec (t) ; y = tan (t) ; z = 1

7. dw
dt if w = x2 + 2xy + z3 and 8. dw

dt if w = x3y2z and
x = cos (t) ; y = sin (t) ; z = t x = et; y = e�t; z = e�t

9. dw
dt if w = tan�1

�
y
x

�
and 10. dw

dt if w = sin�1 (xy) and
x = sin (t) ; y = cos (t) x = cos (t) ; y = tan (t)
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11. @w
@u ;

@w
@v if w = x2 + y2 and 12. @w

@u ;
@w
@v if w = x sin (y) and

x = u2v; y = (u+ v)
3

x = 2uv; y = u2 � v2
13. @w

@u ;
@w
@v if w = sin (x) cot (y) 14. @w

@u ;
@w
@v if w = sin (xy) exy

x = sin�1 (uv) ; y = tan�1 (uv) x = uv�1 ln (v) ; y = u�1v
15. @w

@x ;
@w
@t if w = u2 + v2 and 16. @w

@u ;
@w
@v if w = u2 + v2 and

u = 1p
t
e�x

2=(4t); v = 1
t e
�x2=(2t) u = sin (x� ct) ; v = cos (x� ct)

17. F 0 (t) if F (t) =
R t
0
sin
�
u2t
�
du 18. F 0 (t) if F (t) =

R t
0
e�u

2=tdu

19. F 0 (t) if F (t) =
R t+h
t

sin (u� t) dt 20. F 0 (t) if F (t) =
R t
0

e�u

u2+t2 du

Compute rf and then use it to compute df=dt using the vector form of the
chain rule.

21. f (x; y) = x2 + y3 22. f (x; y) = x3y2

r (t) =


t2; t3

�
r (t) =



t2; t3

�
23. f (x; y) = x2 + 2xy + z2 24. f (x; y) = x3y2z

r (t) = hcos (t) ; sin (t) ; ti r (t) = het; e�t; e�ti
25. f (x; y) = xz cos (y) 26. f (x; y) = tan�1

�
y
x

�
+ z

r (t) = hsin (t) ; t; csc (2t)i r (t) = hcos (t) ; sin (t) ; ti

27. Find y0 given that y is implicitly de�ned as a function of x by

x2 + y2 = 2xy + 1

28. Find y0 given that y is implicitly de�ned as a function of x by

x sin (xy) = y2

29. Compute dw=dt for w = x2 � y2; x = cos (t) ; y = sin (t) in two di¤erent
ways:

1. (a) By substituting x = cos (t), y = sin (t) into w = x2� y2, simplifying,
and computing the derivative.

(b) By using the chain rule for two variables, and then simplifying.

30. Compute dw=dt for w = x3 + xy2; x = cos (t) ; y = sin (t) in two di¤erent
ways:

1. (a) By substituting x = cos (t) ; y = sin (t) into w = x3+xy2; simplifying,
and computing the derivative.

(b) By using the chain rule for two variables, and then simplifying.

31. Prove that the derivative of a sum is the sum of the derivatives by applying
the chain rule for 2 variables to

w = x+ y

where x = f (t) and y = g (t) :
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32. Prove that if w = f (r) where r = hg (u; v) ; h (u; v)i ; then

@w

@u
=
df

dr
� @r
@u
;

@w

@v
=
df

dr
� @r
@v
;

33. Prove the product rule by applying the chain rule for 2 variables to

w = xy

where x = f (t) and y = g (t) :
34. Prove the quotient rule by applying the chain rule for 2 variables to

w =
x

y

where x = f (t) and y = g (t) :
35. Suppose that K (x; u) is di¤erentiable in x and suppose that for all " > 0;
there is a interval (p; q) such that if x is in (p; q), then����K (x+ h; u)�K (x; u)h

�Kx (x; u)

���� < " (2)

independent of u: Show that

d

dx

Z b

a

K (x; u) du =

Z b

a

@K

@x
(x; u) du

1. (a) Let f (x) =
R b
a
K (x; u) du and show that

f (x+ h)� f (x)
h

=

Z b

a

�
K (x+ h; u)�K (x; u)

h

�
du

(b) Show that if x is in (p; q) where (p; q) is an interval on which (2)
holds, then�����f (x+ h)� f (x)h

�
Z b

a

@K

@x
(x; u) du

����� < " (b� a)
What does this imply about f 0 (x)?

36. This exercise uses 2 di¤erent methods to di¤erentiate the inde�nite integral

F (t) =

Z t

0

eu�tdu

1. (a) Find F 0 (t) using the chain rule for functions of 2 variables.

(b) Write F (t) as the product of two functions of t and apply the product
rule. Is the result the same in both cases?
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37. Show that the convolution function

y (t) =

Z t

0

et�uf (u) du

is a solution to y0 � y = f (t) :
38. Show that the convolution function

y (t) =

Z t

0

sin (t� u) f (u) du

is a solution to y00 + y = f (t) :
39. If N (t) is the population of a certain bacteria colony at time t; then

proportion of the the accumulation of
N (t) = initial population + those born in [0; t] who

that survives to time t who survive to time t

If P (t) is the probability that an individual born at time 0 will survive to age t;
then N0P (t) is the proportion who survive to time t: If b is the intrinsic birth
rate, then bN (t)�t is the number of births from time t to time t +�t for �t
small.
a. Explain why P (t� �) is the probability that an individual born at time

� will survive to time t; and use this to explain why the population can be
modeled by

N (t) = P (t)N0 +

Z t

0

bN (�)P (t� �) d� (3)

b. Di¤erentiate both sides of (3) to �nd an equation for N 0 (t).
c. Show that if P (t) = e�t where  > 0 is constant, then what separable

di¤erential equation does b reduce to?
40. Repeat exercise 39 given that the number of births from time t to time
t+�t is

bN (t) (K �N (t))
where K is a constant known as the carrying capacity for the population.
41. Show that if f = f (g; h) where g = g (x; y) and h = h (x; y) ; then

rf = fxrg + fyrh

40. Show that if z = f (x (t) ; y (t)) ; then

d2z

dt2
= fxx

�
dx

dt

�2
+ 2fxy

�
dx

dt

��
dy

dt

�
+ fyy

�
dy

dt

�2
+fx

d2x

dt2
+ fy

d2y

dt2

43. Suppose that z = f (x; y) and that x = p+mt and y = q+nt; where m; n;
p; and q are constants. Show that

z0 (t) = mfx + nfy and z00 (t) = fxxm
2 + 2mnfxy + fyyn

2
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44. A function f (x; y) is said to be homogeneous of degree n if

f (tx; ty) = tnf (x; y) (4)

for all real numbers t: For example, f (x; y) = x3 + 3xy2 is homogeneous of
degree 3 since

f (tx; ty) = (tx)
3
+ 3 (tx) (ty)

2

= t3x2 + t33xy2

= t3f (x; y)

Show that if a di¤erentiable function f (x; y) is homogeneous of degree n; then

x
@f

@x
+ y

@f

@y
= nf (x; y)

(hint: Di¤erentiate both sides of (4) with respect to t� use the chain rule to
di¤erentiate f (tx; ty)� and then let t = 1):
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