Part 3: Quadratic Approximations

Because functions of 2 variables have four second partial derivatives, the quadratic approximation of a function f( x,y) is defined using matrices, where a matrix A is a 2 dimensional rectangular array of numbers, such as for example
A = é
ê
ë
1
2
5
1
0
3
ù
ú
û
If the length of the rows of A is the same as the length of the columns of B, then the product AB is defined to be the matrix of inner products of rows of A with columns of B. For example, if
A = é
ê
ë
2
1
3
5
ù
ú
û
    and    B = é
ê
ë
-4
3
0
2
ù
ú
û
then their product is the matrix of inner products of rows of A with columns of B:
AB = é
ê
ë
2
1
3
5
ù
ú
û
é
ê
ë
-4
3
0
2
ù
ú
û
= é
ê
ë
2( -4) +1·0
2·3+1·2
3( -4) +5·0
3·3+5·2
ù
ú
û
= é
ê
ë
-8
8
-12
19
ù
ú
û
  

Specifically, we define the Hessian matrix of f( x,y) at a point ( p,q) to be
Hf( p,q) = é
ê
ë
fxx( p,q)
fxy( p,q)
fxy( p,q)
fyy( p,q)
ù
ú
û
We then use matrix arithmetic to define the quadratic approximation Q( x,y) of f at ( p,q) to be
Q( x,y) = L( x,y) +  1
2
[ x-p,    y-q]Hf( p,q) é
ê
ë
x-p
y-q
ù
ú
û
The matrix form of Q( x,y) can subsequently be simplified using matrix arithmetic.      

 

EXAMPLE 4    Find the quadratic approximation of f(x,y) = x3-3x+y2 at ( 1,2) .       

Solution: First, fx = 3x2-3 implies that fx(1,2) = 0, and fy = 2y implies that fy( 1,2) = 4. Since f( 1,2) = \allowbreak 2, the linearization of f(x,y) at ( 1,2) is
L( x,y) = 2+0( x-1) +4( y-2) = 2+4(y-2)
Since fxx = 6x, fxy = 0, and fyy = 2, the Hessian at (1,2) is
Hf( 1,2) = é
ê
ë
6
0
0
2
ù
ú
û
Thus, in matrix form the quadratic approximation is given by
Q( x,y) = L( x,y) +  1
2
[ x-1,    y-2] é
ê
ë
6
0
0
2
ù
ú
û
é
ê
ë
x-1
y-2
ù
ú
û
Matrix arithmetic then leads to
Q( x,y)
=
L( x,y) +  1
2
[ x-1,  y-2] é
ê
ë
6( x-1)
2( y-2)
ù
ú
û
=
L( x,y) +  1
2
( x-1) ·6( x-1)+  1
2
( y-2) ·2( y-2)
=
L( x,y) +3( x-1) 2+( y-2) 2
Substitution of L( x,y) = 2+4( y-2) then leads to
Q( x,y) = 2+4( y-2) +3( x-1) 2+(y-2) 2

           

It can be show that for all e > 0, there is a neighborhood of p on which
| f( x) -Qp( x)| < e || x-p || 2
Thus, a quadratic approximation is an even better approximation than is a linearization.

         

EXAMPLE 5    Find the quadratic approximation of f(x,y) = sin( x2+xy+y2) at ( 0,0)       

Solution: First, fx = cos( x2+xy+y2) (2x+y) and fy = cos( x2+xy+y2) (x+2y) . Thus, f( 0,0) = fx( 0,0) = fy( 0,0) = 0 and similarly, L( x,y) = 0. However,
fxx
=
 
x
( cos(x2+xy+y2) ( 2x+y) )
=
2cos( x2+xy+y2) -( 2x+y) 2sin(x2+xy+y2)
from which it follows that fxx( 0,0) = 2. Likewise,
fxy
=
cos( x2+xy+y2) -sin(x2+xy+y2) ( x+2y) ( 2x+y)
fyy
=
2cos( x2+xy+y2) -sin(x2+xy+y2) ( x+2y) 2
Thus, fxy( 0,0) = 1, fyy( 0,0) = 2 and the hessian is
Hf( 0,0) = é
ê
ë
2
1
1
2
ù
ú
û
Consequently, the quadratic approximation is
Q( x,y) = L( x,y) +  1
2
[ x-0,  y-0] é
ê
ë
2
1
1
2
ù
ú
û
é
ê
ë
x-0
y-0
ù
ú
û
Matrix arithmetic and L( x,y) = 0 then leads to
Q( x,y) =  1
2
[ x,  y] é
ê
ë
2x+y
x+2y
ù
ú
û
=  1
2
x( 2x+y) +  1
2
y( x+2y)
However, this in turn simplifies to Q( x,y) = x2+xy+y2.

       

Below we have plotted Q( x,y) = x2+xy+y2 in red versus f( x,y) = sin( x2+xy+y2) .

They are practically the same at ( 0,0) , and indeed, notice that both surfaces have a minimum at ( 0,0) .

 

              

Check your Reading: Is the product of a row of length n and a column of length n the same as an inner product?