Part 3: Quadratic Approximations
Because functions of 2 variables have four second partial
derivatives, the quadratic approximation of a function f( x,y)
is defined using matrices, where a matrix A is a 2 dimensional
rectangular array of numbers, such as for example
If the length of the rows of A is the same as the length of the columns of
B, then the product AB is defined to be the matrix of inner products of
rows of A with columns of B. For example, if
A = |
é ê
ë
|
|
|
ù ú
û
|
and B = |
é ê
ë
|
|
|
ù ú
û
|
|
|
then their product is the matrix of inner products of rows of A
with columns of B:
AB = |
é ê
ë
|
|
|
ù ú
û
|
|
é ê
ë
|
|
|
ù ú
û
|
= |
é ê
ë
|
|
|
ù ú
û
|
= |
é ê
ë
|
|
|
ù ú
û
|
|
|
Specifically, we define the Hessian matrix of f( x,y)
at a point ( p,q) to be
We then use matrix arithmetic to define the quadratic approximation Q( x,y) of f at ( p,q) to be
Q( x,y) = L( x,y) + |
1
2
|
[ x-p, y-q]Hf( p,q) |
é ê
ë
|
|
|
ù ú
û
|
|
|
The matrix form of Q( x,y) can subsequently be simplified
using matrix arithmetic.
EXAMPLE 4 Find the quadratic approximation of f(x,y) = x3-3x+y2 at ( 1,2) .
Solution: First, fx = 3x2-3 implies that fx(1,2) = 0, and fy = 2y implies that fy( 1,2) = 4.
Since f( 1,2) = \allowbreak 2, the linearization of f(x,y) at ( 1,2) is
L( x,y) = 2+0( x-1) +4( y-2) = 2+4(y-2) |
|
Since fxx = 6x, fxy = 0, and fyy = 2, the Hessian at (1,2) is
Thus, in matrix form the quadratic approximation is given by
Q( x,y) = L( x,y) + |
1
2
|
[ x-1, y-2] |
é ê
ë
|
|
|
ù ú
û
|
|
é ê
ë
|
|
|
ù ú
û
|
|
|
Matrix arithmetic then leads to
|
|
L( x,y) + |
1
2
|
[ x-1, y-2] |
é ê
ë
|
|
|
ù ú
û
|
|
| |
|
L( x,y) + |
1
2
|
( x-1) ·6( x-1)+ |
1
2
|
( y-2) ·2( y-2) |
| |
|
L( x,y) +3( x-1) 2+( y-2) 2 |
|
|
Substitution of L( x,y) = 2+4( y-2) then leads to
Q( x,y) = 2+4( y-2) +3( x-1) 2+(y-2) 2 |
|
It can be show that for all e > 0, there is a
neighborhood of p on which
| f( x) -Qp( x)| < e || x-p || 2 |
|
Thus, a quadratic approximation is an even better approximation than is a
linearization.
EXAMPLE 5 Find the quadratic approximation of f(x,y) = sin( x2+xy+y2) at ( 0,0)
Solution: First, fx = cos( x2+xy+y2) (2x+y) and fy = cos( x2+xy+y2) (x+2y) . Thus, f( 0,0) = fx( 0,0) = fy( 0,0) = 0 and similarly, L( x,y) = 0. However,
|
|
|
¶
¶x
|
( cos(x2+xy+y2) ( 2x+y) ) |
| |
|
2cos( x2+xy+y2) -( 2x+y) 2sin(x2+xy+y2) |
|
|
from which it follows that fxx( 0,0) = 2. Likewise,
|
|
cos( x2+xy+y2) -sin(x2+xy+y2) ( x+2y) ( 2x+y) |
| |
|
2cos( x2+xy+y2) -sin(x2+xy+y2) ( x+2y) 2 |
|
|
Thus, fxy( 0,0) = 1, fyy( 0,0) = 2 and the
hessian is
Consequently, the quadratic approximation is
Q( x,y) = L( x,y) + |
1
2
|
[ x-0, y-0] |
é ê
ë
|
|
|
ù ú
û
|
|
é ê
ë
|
|
|
ù ú
û
|
|
|
Matrix arithmetic and L( x,y) = 0 then leads to
Q( x,y) = |
1
2
|
[ x, y] |
é ê
ë
|
|
|
ù ú
û
|
= |
1
2
|
x( 2x+y) + |
1
2
|
y( x+2y) |
|
However, this in turn simplifies to Q( x,y) = x2+xy+y2.
Below we have plotted Q( x,y) = x2+xy+y2
in red versus f( x,y) = sin( x2+xy+y2) .
They are practically the same at ( 0,0) , and indeed, notice
that both surfaces have a minimum at ( 0,0) .
Check your Reading: Is the product of a row of length n
and a column of length n the same as an inner product?