Partial Differential Equations

Partial Differential Equations

Much of modern science, engineering, and mathematics is based on the study of
partial differential equations, where a partial differential equation is an equation
involving partial derivatives which implicitly defines a function of 2 or more
variables.

For example, if u (z,t) is the temperature of a metal bar at a distance z from
the initial end of the bar,

then under suitable conditions w (x,t) is a solution to the heat equation
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where k is a constant. As another example, consider that if u(z,t) is the

displacement of a string a time ¢, then the vibration of the string is likely to
satisfy the one dimensional wave equation for a constant, which is
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When a partial differential equation occurs in an application, our goal is
usually that of solving the equation, where a given function is a solution of a
partial differential equation if it is implicitly defined by that equation. That is,
a solution is a function that satisfies the equation.

EXAMPLE 1 Show that if a is a constant, then v (z,y) = sin (at) cos (x)
is a solution to
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Solution: Since a is constant, the partials with respect to t are

0 0?

8—? = acos (at) cos (), a—tg = —a”sin (at) sin (z) (3)
Moreover, u, = —sin (at)sin(z) and u,, = —sin(at)cos(x), so
that o2

aQa—xZ = —a*sin (at) cos () (4)



Since (3) and (4) are the same, u (z,t) = sin (at) cos (z) is a solution
to (2).

EXAMPLE 2 Show that u (z,t) = e¥ sin (x) is a solution to Laplace’s

FEquation,
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Solution: To begin with, u, = e¥cos(z) and uz, = —eYsin(z).
Moreover, u, = e¥ sin (x) and u,, = e¥sin (z), so that
9? 0?
a—xg + a—yZ =—eYsin(z)+e’sin(z) =0

Check your Reading: Why are u, u,, and uy, the same as u in example 27

Separation of Variables

Solutions to many (but not all!) partial differential equations can be obtained
using the technique known as separation of variables. It is based on the fact
that if f(z) and g (¢) are functions of independent variables z,t respectively
and if

flx)=g(t)
then there must be a constant A for which f (x) = X and g (¢) = A. ( The proof
is straightforward, in that

8%3 () = %g(t):O = f'(z)=0 = f(x) constant
%9 (t) = % (x)=0 = ¢ (t)=0 = g(z) constant)

In separation of variables, we first assume that the solution is of the separated

form
u(z,t) =X ()T (¢)

We then substitute the separated form into the equation, and if possible, move
the z-terms to one side and the ¢-terms to the other. If not possible, then this
method will not work; and correspondingly, we say that the partial differential
equation is not separable.

Once separated, the two sides of the equation must be constant, thus re-
quiring the solutions to ordinary differential equations. A table of solutions to
common differential equations is given below:

Equation General Solution

Yy +wly=0 y (z) = Acos (wx) + Bsin (wz)

Y =ky y (t) = Pkt

Yy —w?y =0 y (z) = Acosh (wz) + Bsinh (wz)



The product of X (x) and T (t) is the separated solution of the partial differential
equation.

EXAMPLE 3 For k constant, find the separated solution to the
Heat Equation
ou 0%u
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Solution: To do so, we substitute u (z,t) = X (z)7T (t) into the
equation to obtain
0 0?

o7 (X (@) T (£) = kg (X (2) T (1))

Since X (z) does not depend on ¢, and since T (t) does not depend
on x, we obtain

) 02
ST () = kT (1) 55X ()

which after evaluating the derivatives simplifies to

X (x)

X ()T (t) = kT (t) X" (z)

To separate the variables, we divide throughout by kX (x) T (¢):

X (@)T'(t) _ KT (t) X" (x)
kX ()T (1) kX ()T (2)

This in turn simplifies to

() X" (x)

kT (t) X (z)
Thus, there is a constant A such that
T/ X/I
ﬁ = A and 7 = A

These in turn reduce to the differential equations
T = \kT and X" =)X
The solution to the first is an exponential function of the form
T (t) = Pett

If A > 0, however, then temperature would grow to oo, which is not
physically possible. Thus, we assume that A is negative, which is to
say that A = —w? for some number w. As a result, we have

X" = —w?X or X" +w?X =0



The equation X" + w?X = 0 is a harmonic oscillator, which has a
solution
X (z) = Acos (wx) + Bsin (wx)

Consequently, the separated solution for the heat equation is

u(z,t) =X ()T (t) = Pe’kt (A cos (wz) + Bsin (wz))

It is important to note that in general a separated solution to a partial
differential equation is not the only solution or form of a solution. Indeed,
in the exercises, we will show that

1 2
u(z,t) = ——e @ /(1K)
(@) = 7=
is also a solution to the heat equation in example 3.
As a simpler example, consider that F (x,y) =y — x
partial differential equation

2 is a solution to the

Fp+22F, =0
This is because substituting F,, = —2x and F, = 1 into the equation yields
Fp+22F, = 2x+2x-1=0

Now let’s obtain a different solution by assuming a separated solution of the
form F (z,y) = X (2)Y (y).

EXAMPLE 4 Find the separated solution to F, + 2zF} = 0.

Solution: The separated form F' (z,y) = X (z)Y (y) results in

0

TAX (@)Y (1) + 20 (X (1) Y (1) = 0

dy
which in turn leads to

X' ()Y (y) = =22 X ()Y (y)
Dividing both sides by X ()Y (y) leads to
X'(z) _Y'(y)

—2zX (x) Y (y)

However, a function of x can be equal to a function of y for all z
and y only if both functions are constant. Thus, there is a constant
A such that

X'(@) _
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It follows that Y’ (y) = AY (y), which implies that Y (y) = Cje?.
However, X’ () = AxX (z), so that separation of variables yields

dX dX

Thus, [dX/X = X [ zdz, which yields

In|X| = —x?+0,
|X| — e*)\IQJrCQ
X(z) = L2

Thus, if we let C3 = +e“2, then Y (y) = Csexp (2%/2) and the
separated solution is

F(z,y) = Ce" M = CeMv—2?)

where C' = C'1C} is an arbitrary constant.

Notice that there are similarities between the separated solution

F(z,y) = CeMv=2?)

and the other solution we stated earlier, F (x,y) = y — 2%. However, the two
solutions are clearly not the same.

Check your Reading: Why is this method called separation of variables?

Boundary Conditions

Partial differential equations often occur with boundary conditions, which are
constraints on the solution at different points in space. To illustrate how bound-
ary conditions arise in applications, let us suppose that u (z,t) is the displace-
ment at z in [0,1] of a string of length [ at time ¢:
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Tension on a short section of the string over the interval [z, z + Ax] is along the
tangents to the endpoints,

1
y=u(x.t) /p\
dz (x+DX) = u,(x+Dxyt)

H0 = vy

X X+Dx

Thus, the net tension responsible for pulling the string toward the z-axis is
proportional to the difference in the slopes,

Net Tension =k ((uy (x + Az, t) — uy (z,t) )

where k is the tension constant (see http://en.wikipedia.org/wiki/Vibrating string#Derivation
for details). Consequently, if y is the mass-density of the string (mass per unit
length), then mass times acceleration equal to the force of tension yields

0%u

T =k(ug (z+ Az, t) —uy (z,t) )
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for arbitrarily small Az. Solving for uy and letting Az approach 0 yields

Pu k. Uy (x + Az, t) — uy (2,1) _ﬁ@

2 T damo Az Oz

so that if we let a® = k/u, then the partial differential equation describing the
motion of the string is
Pu  ,0%u
o2~ 02
which is the one-dimensional wave equation.
Moreover, since the string is fixed at * = 0 and x = [, we also have the
boundary conditions

(5)

u(0,8) =0 and u(l,t) =0 (6)

for all times t. If we avoid the trivial solution (that of no vibration, u = 0),
then these boundary conditions can be used to determine some of the arbitrary
constants in the separated solution.

EXAMPLE 5 Find the solution of the one dimensional wave equa-
tion (5) subject to the boundary conditions (6).



Solution: To do so, we substitute u (z,t) = X (z)T (¢) into the
equation to obtain

02 0?
5z X @) T @)= a2@ X(@)T@®) = X@TI"Ft)=dTt)X" ()

To separate the variables, we then divide throughout by a?X (z) T (¢):

X (z)T" (t) _ a’T (t) X" (x)
a?X ()T (t) a?X ()T (t)

This in turn simplifies to

T// (t) _ X// ([Z:)

a?T (t) X (z)

As a result, there must be a constant A such that

TII X//
=A and — =

— A
a?T X

These in turn reduce to the differential equations
T"=Xa®T and X" =)X

If A > 0, however, the oscillations would become arbitrarily large in
amplitude, which is not physically possible. Thus, we assume that
) is negative, which is to say that A = —w? for some number w. As
a result, we have

T" = —a?W?T and X" = —w?X

Both equations are harmonic oscillators, so that the general solutions
are

T (t) = Aj cos (awt)+ By sin (awt) and X (z) = As cos (wz)+ Bsg sin (wx)

where A1, By, Ao, and By are arbitrary constants.

Let’s now concentrate on X (z). The boundary conditions (6)
imply that

u(0,t) =X (0)T(t) =0 and u(l,t)y=X0)T(t)=0

If we let T'(¢t) = 0, then we will obtain the solution w(x,t) = 0
for all t. This is called the trivial solution since it is the solution
corresponding to the string not moving at all. To avoid the trivial
solution, we thus assume that

X(0)=0 and X()=0



However, X (z) = Ay cos (wz) + Bgsin (wz), so that X (0) = 0 im-
plies that
0= Ajcos(0) + Besin (0) = A,

Thus, A2 = 0 and X (z) = Bssin(wz). The boundary condition
X (1) = 0 then implies that
By sin (wl) =0

If we let By = 0, then we again obtain the trivial solution. To avoid
the trivial solution, we let sin (wl) = 0, which in turn implies that

wl =nm

for any integer n. Thus, there is a solution for w, = nw/l for each
value of n, which means that

X, (x) = Basin (?az)

is a solution to the vibrating string equation for each m. Conse-
quently, for each integer n there is a separated solution of the form
anm

Up (x,t) = {Al cos (Tt) + B sin (anth)] By sin (?m) (7)

Check your Reading: Where did the anw/l come from in the final form of
the separated solution?

Linearity and Fourier Series

We say that a partial differential equation is linear if the linear combination
of any two solutions is also a solution. For example, suppose that p (z,t) and
q (z,t) are both solutions to the heat equation—i.e., suppose that

o _,
ot 9z
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and

A linear combination of p and ¢ is of the form u (z,t) = Ap (z,t) + Bq(z,t)
where A, B are both constants. Moreover,

ou_ 0 _ a0 g

so that (8) implies that

Ou  Op dq 0%p 0%q B 0?



That is, the linear combination u (z,t) = Ap (x,t) + Bq(x,t) is also a solution
to the heat equation, and consequently, we say that the heat equation is a linear
partial differential equation.

Suppose now that a linear partial differential equation has both boundary
conditions and initial conditions, where initial conditions are constraints on the
solution and its derivatives at a fixed point in time. Then a complete solution
to the partial differential equation can often be obtained from the Fourier series
decompositions of the initial conditions.

For example, let us suppose that the vibrating string in example 5 is plucked
at time ¢ = 0, which is to say that it is released from rest at time ¢ = 0 with an
initial shape given by the graph of the function y = f (z):

¥

1, 0)=f(x)

string not moving af =0

Then the initial conditions for the vibrating string are

0
u(z,0) = f(z) and 8—1: (2,0)=0
Let’s apply the initial conditions to the separated solution (7). The initial
condition u; (z,0) = 0 implies that X (z) T’ (0) = 0, so that to avoid the trivial
solution we suppose that 77 (0) = 0. Thus,

0=1T"(0) = —awA; sin (0) + Byaw cos (0) = B

As a result, we must have T (t) = A; cos (annt/l), and if we define b,, = A1 Bs,
then (7) reduces to

Uy, (z,t) = by, coS (@t) sin (nl—wx) (9)

As will be shown in the exercises, the 1 dimensional wave equation is linear.
Thus, if u; (z,t) and uy (z,t) are solutions (9) for integers j and k, then u; (x,t)+
ug, (x,t) is also a solution. In fact, the sum all possible solutions, which is the
sum of all solutions for any positive integer value of n, is a solution called the



general solution. That is, the general solution to the 1 dimensional wave
equation with the given boundary and initial conditions is

u(z,t) = i b, cos (anth> sin (?m) (10)

Hence, the only task left is that of determining the values of the constants
b,,. However, (10) implies that

u(z,0) = i by, cos (0) sin (?x)

and since u (x,0) = f (z), this reduces to

fx)= T;bn sin <n77rm)

As a result, if f (z) is continuous and if f (0) = f (I), then the constants b,, are
the Fourier Sine coefficients of f (x) on [0,!], which are given by

b, = ?/Ol f (z)sin (?m) dz (11)

For more on Fourier series and their relationship to partial differential equations,
see the Maple worksheet associated with this section.

EXAMPLE 6 What is the solution to the vibrating string problem
for a 2 foot long string which is initially at rest and which has an
initial shape that is the same as the graph of the function

1 |z — 1]

u(x,O)zE B

Solution: We begin by finding the Fourier coefficients b, which
according to (11) are for an [ = 2 foot long string given by

2 (/1 |z—1] nw
w1 [ (o ()
" 2A (12 12 )sm 2 ¥)

:Evaluating using the computer algebra system Maple then yields

_ 2sin (Zr) — sin (nm)

=
3n2m2

10



However, since n is an integer, sin(nw) = 0 for all n. Thus, b,

reduces to )
b — 2sin (7)
" 3n2n2
But sin ("—2”) = 0 when n is even, so that by = by = ... = bg,, = 0.
Thus, we only have odd coefficients of the form
2sin (%) 2sin (2) 2sin (2F)
1:7’ b3:77 b5:7?"'
3-12. 72 3.32. 72 3.52. 72
which simplify to
s 2 2L, 21
PRI 7T 3.32q2 0 3.5 p2
Odd numbers are of the form 2n+ 1 for n =0, 1,.... Thus, we have
2(—=1)"
b2n+1 - ( )

372 (2n +1)°
and the solution (10) is of the form

w(z,t) = i 3;((2;11”1)2 cos (G(in—l— 1) wt> . ((2n+l1)7rx)

n=0

The Fourier series (10) is known as the Harmonic Series in music theory. Indeed,
if we write the Fourier series in expanded form

am AL 2am . 2 dam . 3
u(x,t) = by cos (Tt> sin (790) +by cos (lt> sin (lx) +bs3 cos (lt) sin <Zx>+. ..

then the first term is known as the fundamental, which corresponds to the string
shape of y = sin (7z/l), which is fixed at z = 0 and = = [, oscillating at an
amplitude of b;. The oscillations themselves have a frequency of

ar rad leycle a cycles

=" =

I sec 2mrad 2l sec

A "cycle per second" is known as a Hertz and recall that a = k/p, so that

k
fi= 20l Hz
Thus, increases in tension k cause the fundamental pitch to rise, while length-
ening the string lowers the pitch. A heavier string (larger p ) has a lower pitch
than a lighter string.
The second term in the Harmonic Series of the string oscillates at an ampli-
tude by with twice the frequency of the fundamental,

2am

fQZTZQfl-
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It is known as the first harmonic or first overtone of the string, and it corre-
sponds to the oscillation of a string shape y = sin (27rz/1) that is fixed at z = 0,
x =1/2, and x = [ — i.e., half as long as the fundamental. Similarly, the third
term is the second harmonic, which oscillates at a frequency of f3 = 3f; and
which corresponds to oscillations at amplitude b3 of sinusoidal shapes a third as
long as the fundamental.

Vibrating String with Fundamental and 2 Overtones

064
044
024

<<=
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X
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|— string —— fundamental 1st harmonic 2nd harmonic

For example, if the string is at a length, tension, and mass so as to oscillate
with a frequency of 440 hz ("A" above middle "C"), then we also hear a pitch
of fo = 880 hz (an octave above the fundamental), a pitch of f3 = 3(440) hz
(an octave and a fifth above the fundamental) and so on.

Exercises
Show that the given function is a solution to the given partial differential equa-
tion. Assume that k, w, a, and c are constants.

1. u(z,y) =2® - 3ay? is a solution to  §— + o = 0

2. wu(x,y) =32y —y> is a solution to g% —+ 273 =0

3. u(x,t) =2t +a? is a solution to %}f = %

4. wu(w,t) =22+ 2 is a solution to 27;‘ = %

5. u(z,y) =€ sin(y) is a solution to % +2u—

6. u(z,y)=tan"' (%) is a solution to % + ‘3712‘ =0

7. u(z,t) = ekt cos (wz) is a solution to %—z = k‘gi";

8. wu(z,t) =sin(wx)sin (awt) is a solution to % = az%

9. wu(z,t)=f(x+ct) is a solution to 27;‘ = 023,—%};
10.  w(z,t) = f(z —ct) is a solution to %Tg = 02%

Find the separated solution to each of the following partial differential equations.

12



Assume that k, a, ¢, and T are constant.

11. %7: = g—; 12. % = _k%%
13. 94+ 677; =0 4. 2= —2x8—Z
15. F,+e “F,=0 16.  F,+32?F, =0
17 uz+ur=u 18. %%Z:u
19. %—l—g%:o 20. Ut = Uz +Uu
21 GE TR~V =0 2 w=um—u

& - - N2 ~ -
23. Sp-Qudu—y 24 SF+ =0

25. Show that
u(z,t) = ite_zz/(“)

is a solution to the heat equation u; = Uy
26. Show that u (z,y,2) = (z? + y* + 22)1/2
Laplace equation

is a solution to the 8 dimensional
Pu  u o
0x2 = Oy? 022
27. Let i = —1 and suppose that u (z,y) and v (z,y) are such that
(@ +iy)* = u(z,y) +iv(z,y)
Find v and v and show that both satisfy Laplace’s equation—that is, that

Pu Bu_ o o
ox? = oy? e a2 o2

In addition, show that v and v satisfy the Cauchy-Riemann Equations
Up = Uy, Uy = —Ug
28. Let i? = —1 and suppose that u (z,y) and v (z,y) are such that
(z+iy)" = u(@,y) +iv(z,y)
Find v and v and show that both satisfy Laplace’s equation—that is, that

u Pu_ o o
ox? = oy? e 92 oy?

In addition, show that u and v satisfy the Cauchy-Riemann Equations

0

Ug = Vy, Uy = —Up

29. Suppose that a large population of micro-organisms (e.g., bacteria or plank-
ton) is distributed along the z-axis. If u (z,t) is the population per unit length
at location x and at time ¢, then u (x, t) satisfies a diffusion equation of the form



where p is the rate of dispersal and r is the birthrate of the micro-organisms. If
1 and 7 are positive constants, then what is a separated solution of this diffu-
sion equation? (adapted from Mathematical Models in Biology, Leah Edelstein-
Keshet, Random House, 1988, p. 441).

30. Suppose that t denotes time and z denotes the age of a cell ina given
population of cells, and let

number of cells whose
u(z,t)de = age at time t is
between x and x + dx

Then u (x,t) is the cell density per unit age at time ¢, and given appropriate

assumptions, it satisfies

@_’_ @—d@
ot voaz 092

where vy and dyp are positive constants. What is the separated solution to
this equation? (adapted from Mathematical Models in Biology, Leah Edelstein-
Keshet, Random House, 1988, p. 466).
31. Find the separated solution of the telegraph equation with zero self induc-
tance: o2 5
U U

92 = RC 5 + RSu
Here u (z,t) is the electrostatic potential at time ¢ at a point z units from one
end of a transmission line, and R, C, and S are the resistance, capacitance, and
leakage conductance per unit length, respectively.
32. If V (z,t) is the membrane voltage at time ¢ in seconds and at a distance
x from the distal (i.e., initial) end of a uniform, cylindrical, unbranched section
of a dendrite, then V' (x,t) satisfies

d 0%V oV 1
T R T (12)

where d is the diameter of the cylindrical dendritic section, R; is the resistivity
of the intracellular fluid, C,, is the membrane capacitance, and R, is the mem-
brane resistivity. Find a separated solution to (12) given that Cy,, R,,, and R;
are positive constants.

33. In Quantum mechanics, a particle moving in a straight line is said to be in
a state ¥ (x,t) if

b
/ b () de

represents the probability of the particle being in the interval [a,b] on the line
at time ¢. If a subatomic particle is traveling in a straight line close to the speed
of light, then it’s state satisfies the one dimensional Klein-Gordon Equation

0%y 0%
2 o W
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where A > 0 is constant. Find the separated solution of the one dimensional
Klein-Gordon equation.

34. If a subatomic particle is traveling in a straight line much slower than
the speed of light and no forces are acting on that particle, then its state (as
explained in problem 33) satisfies the one dimensional Schrodinger equation of
a single free particle.

oY 0%y

S i 13

ot~ o (13)
where i? = —1. Find the separated solution of (13) (Hint: you will need to use

Euler’s identity ‘
et = cos (t) + isin (t)

35. Show that if u (x,t) and v (z,t) are both solutions to the one dimensional

wave equation

*u 2 0%u

o2 02
then so also is the function w (z,t) = Au(z,t) + Bv (x,t) where A and B are
constants. What does this say about the wave equation?

36. Show that if u (x,y) and v (z,y) are both solutions to Laplace’s equation

0?u  0%u
o4 T 220
ox2 = Oy?

then so also is the function w (z,y) = Au (z,y) + Bv (z,y) where A and B are
constants. What does this tell us about Laplace’s equation?

37. Suppose that the initial conditions for the guitar string in example 6 are

du

u (z,0) = sin (g) and ot (,0)=0
What are the coefficients b,, in the solution (10) for these initial conditions?

38. Solve the vibrating string problem for the boundary conditions

ou ou
—(0,t) = d bt
9 (0,t) =0 an 5
and for the initial conditions u (z,0) = f (x) and u; (x,0) = 0.
39. Heat Equation I: Find the general solution to the heat equation

(1,t) =0

ou k82u
ot 0x2
subject to the boundary conditions

u(0,t) =0 u(mt) =0

40. Heat Equation II: If the initial condition is u (z,0) = 7z — 22, then what
are the Fourier coeflicients in the general solution found in exercise 397

15



41. Laplace’s Equation I: Find the general solution to the Laplace equation

ou o
ox?  oy?

subject to the boundary conditions
u(0,y) =0 u(my) =0

42. Laplace’s Equation II: If the initial conditions are w (x,0) = sin (x/2)
and uy (z,0) = 0, then what are the Fourier coefficients in the general solution
found in exercise 417
43. Write to Learn: In a short essay, explain in your own words why an
equation of the form

flzy)=g(t)
implies that both f (x,y) and g (¢) are constant. (z, y, and ¢ are both indepen-
dent variables).
44. *What is a separated solution of the 2-dimensional wave equation
0%u 0u  0%u

e T Sl
o2~ 002 T Vo2

45. Find a separated solution of the following nonlinear wave equation:

ou ou

ot~ “ox
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