
Partial Derivatives

Partial Derivatives

Just as derivatives can be used to explore the properties of functions of 1 vari-
able, so also derivatives can be used to explore functions of 2 variables. In
this section, we begin that exploration by introducing the concept of a partial
derivative of a function of 2 variables.
In particular, we de�ne the partial derivative of f (x; y) with respect to x to

be

fx (x; y) = lim
h!0

f (x+ h; y)� f (x; y)
h

when the limit exists. That is, we compute the derivative of f (x; y) as if x is the
variable and all other variables are held constant. To facilitate the computation
of partial derivatives, we de�ne the operator

@

@x
= �The partial derivative with respect to x�

Alternatively, other notations for the partial derivative of f with respect to x
are

fx (x; y) =
@f

@x
=
@

@x
f (x; y) = @x f (x; y)

EXAMPLE 1 Evaluate fx when f (x; y) = x2y + y2:

Solution: To do so, we write

fx (x; y) =
@

@x

�
x2y + y2

�
=
@

@x
x2y +

@

@x
y2

and then we evaluate the derivative as if y is a constant. In partic-
ular,

fx (x; y) = y
@

@x
x2 +

@

@x
y2 = y � 2x+ 0

That is, y factors to the front since it is considered constant with
respect to x: Likewise, y2 is considered constant with respect to x;
so that its derivative with respect to x is 0. Thus, fx (x; y) = 2xy:

Likewise, the partial derivative of f (x; y) with respect to y is de�ned

fy (x; y) = lim
h!0

f (x; y + h)� f (x; y)
h
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when the limit exists. That is, we evaluate fy as if y is varying and all other
quantities are constant. Moreover, we also de�ne the operator

@

@y
= �The partial derivative with respect to y�

and we often use other notations for fy (x; y):

fy (x; y) =
@f

@y
=
@

@y
f (x; y) = @y f (x; y)

EXAMPLE 2 Find fx and fy when f (x; y) = y sin (xy)

Solution: To �nd fx; we use the chain rule

fx = y
@

@x
sin (xy) = y cos (xy)

@

@x
xy = y2 cos (xy)

However, to �nd fy; we begin with the product rule:

fy =
@

@y
[y sin (xy)] =

�
@

@y
y

�
sin (xy) + y

@

@y
sin (xy)

We then use the chain rule to evaluate @y sin (xy):

fy = sin (xy) + y cos (xy)
@

@y
(xy)

= sin (xy) + xy cos (xy)

If y = q for some constant q; then f (x; q) is a function of x; and fx (x; q) is the
slope of the tangent line to the curve z = f (x; q) in the y = q plane. Similarly,
fy (p; y) for p constant is the slope of a tangent line to the curve z = f (p; y) in
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the x = p plane.

That is, fx (x; y) is the slope of a tangent line to z = f (x; y) parallel to the
xz-plane, while fy (x; y) is the slope of a tangent line to z = f (x; y) in the
yz-plane, an idea we will explore more fully in a later section.

blueEXAMPLE 3 blackFind fx and fy when

f (x; y) = tan�1
�y
x

�
Solution: To �nd fx; we begin with the chain rule

fx =
@

@x
tan�1 (input) =

1

(input)2 + 1

@

@x
(input)

where the input is y=x: Writing the input as x�1y and substituting
then yields

fx =
1

(x�1y)
2
+ 1

@

@x

�
x�1y

�
=

�x�2y
x�2y�2 + 1
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To simplify this expression, we multiply the numerator and denom-
inator by x2:

fx =
x2
�
�x�2y

�
x2 (x�2y�2 + 1)

=
�x2x�2y

x2x�2y2 + x2
=

�y
y2 + x2

To �nd fy; we again begin with the chain rule,

fy =
@

@y
tan�1 (input) =

1

(input)2 + 1

@

@y
(input)

where the input is y=x. The result is that

fy =
1�

y
x

�2
+ 1

@

@y

�y
x

�
=

1�
y
x

�2
+ 1

�
1

x

@

@y
(y)

�
which simpli�es to

fy =
1�

y2

x2 + 1
�
x
=

x�
y2

x2 + 1
�
x2
=

x

x2 + y2

Check your Reading: What happend to the expression x2x�2 in example 3?

Interpretations of the Partial Derivative

Analogous to a function of 2 variables, we de�ne a function of 3 variables is a
mapping that assigns one and only one real number to each point in a subset of
3 dimensional space. It follows that a function of three variables is of the form

F (x; y; z) = \expression in x; y; and z�

Partial derivatives of functions of 3 variables are de�ned analogously to par-
tial derivatives of functions of two variables (see the exercises). Thus, to di¤er-
entiate a function of 3 variables F (x; y; z) with respect to x; we di¤erentiate as
if y and z are constants. The partial derivatives Fy and Fz are de�ned similarly
, and correspondingly, to calculate Fy and Fz, we di¤erentiate with respect to
y and z; respectively.

EXAMPLE 4 Find the �rst partial derivatives of F (x; y; z) = x3+
3xyz + z2:
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Solution: To compute fx; we treat y and z as if they were constant:

Fx =
@

@x

�
x3 + 3xyz + z2

�
=

@

@x
x3 + 3yz

@

@x
x+

@

@x
z2

= 3x2 + 3yz

Likewise, Fy follows from treating x and z like constants,

Fy =
@

@y

�
x3 + 3xyz + z2

�
= 0 + 3xz + 0 = 3xz

and Fz follows from treating x and y like constants.

Fz =
@

@z

�
x3 + 3xyz + z2

�
= 3xy + 2z

In many applications, functions of three variables occur in the form u (x; y; t) ;
where t is a measure of time. In such examples, the de�nition of the partial
derivative ut implies that it is the rate of change of u (x; y; t) with respect to t:
Indeed, partial derivatives often occur in applications as a rate of change of a
given output with respect to only one of several inputs.

EXAMPLE 5 A rectangular sheet of metal with a length of � feet
and a width of 1 foot has its left section placed in an oven and its
rightmost extent placed in liquid nitrogen.

Upon being removed from the oven and nitrogen, its temperature u
in �F at time t in seconds and at a point (x; y) on the sheet is given
by

u (x; y; t) = 75 + 300e�0:2t cos (x) cosh (y)

How fast is the temperature of the sheet changing with respect to
time at the point (0; 0)? At the point (�; 0)? How do the rates
compare?
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Solution: The rate of change of u with respect to t is given by

@u

@t
=
@

@t

�
75 + 300e�0:2t cos (x) cosh (y)

�
= �60e�0:2t cos (x) cosh (y)

Thus, at (0; 0) ; the time rate of change of temperature is

@u

@t
(0; 0; t) = �60e�0:2t cos (0) cosh (0) = �60e�0:2t �F per sec

while at (�; 0) ; the time rate of change of temperature is

@u

@t
(�; 0; t) = �60e�0:2t cos (�) cosh (0) = 60e�0:2t �F per sec

This means that the temperature increases to 75�F over time at
the point (�; 0) ; while it decreases down to 75�F at (0; 0) : Note:
this �ts well with the fact that the temperature initially at (0; 0) is
375�F; while the tmperature initially at (�; 0) is �225�F:

Check your Reading: After a long period of time, what will be the approxi-
mate temperature of the metal sheet at every point on the sheet?

Second Derivatives

The second partial derivative of f with respect to x is denoted fxx and is de�ned

fxx (x; y) =
@

@x
fx (x; y)

That is, fxx is the derivative of the �rst partial derivative fx: Likewise, the
second partial derivative of f with respect to y is denoted fyy and is de�ned

fyy (x; y) =
@

@y
fy (x; y)

Finally, the mixed partial derivatives are denoted fxy and fyx, respectively, and
are de�ned

fxy (x; y) =
@

@y
fx (x; y) and fyx =

@

@x
fy (x; y)

Collectively, fxx; fyy; fxy, and fyx are known as the second partial derivatives
of f (x; y). Moreover, we sometimes denote the second partial derivatives in the
form

fxx =
@2f

@x2
; fxy =

@2f

@x@y
; fyy =

@2f

@y2
; fyx =

@2f

@y@x
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EXAMPLE 6 Find the second partial derivatives of

f (x; y) = x3 + 3x2y2

Solution: The �rst partial derivatives are fx = 3x2 + 6xy2 and
fy = 6x

2y: As a result, we have

fxx (x; y) =
@

@x
fx (x; y) =

@

@x

�
3x2 + 6xy2

�
= 6x+ 6y2

fyy (x; y) =
@

@y
fy (x; y) =

@

@y

�
6x2y

�
= 6x2

fxy (x; y) =
@

@y
fx (x; y) =

@

@y

�
3x2 + 6xy2

�
= 12xy

fyx (x; y) =
@

@x
fy (x; y) =

@

@x

�
6x2y

�
= 12xy

Notice that the mixed partial derivatives are the same. Indeed, the mixed
partials are always the same for �nice�functions, as is stated below in Clairaut�s
theorem.

Clairaut�s Theorem: If f is de�ned on a neighborhood of (p; q)
and if fxy and fyx are continuous on that neighborhood, then

fxy (p; q) = fyx (p; q)

There are functions that do not satisfy the hypotheses of theorem 3.1 for which
the mixed partials are not the same at some point (see exercise 46). However,
our focus will be on functions with continuous second partial derivatives, in
which case the mixed partials are the same (a proof of Clairaut�s theorem is
given in chapter 4).

EXAMPLE 7 Find fyx and fxy for f (x; y) = x sin (xy)

Solution: The �rst partial derivatives are

fx = sin (xy) + xy cos (xy) and fy = x
2 cos (xy)

The product rule thus implies that

fyx =
@

@x

�
x2 cos (xy)

�
= 2x cos (xy)� x2y sin (xy)
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Now let�s compute fxy (and thus con�rm theorem 3.1):

fxy =
@

@y
(sin (xy) + xy cos (xy))

= x cos (xy) + x cos (xy) + xy

�
� sin (xy) @

@y
xy

�
= 2x cos (xy)� x2y sin (xy)

Check your Reading: If f (x; y; z) is in�nitely di¤erentiable in each variable,
then is fxz = fzx?

Higher Derivatives

Higher partial derivatives are de�ned similarly. For example, the third derivative
of f with respect to x is the partial derivative with respect to x of the second
derivative fxx: That is,

fxxx (x; y) =
@

@x
fxx (x; y)

Similarly, fxxy is de�ned

fxxy (x; y) =
@

@y
fxx (x; y)

In operator notation, the partial derivative of f for m times with respect to
x and n times with respect to y is denoted by

@m+nf

@xm @yn

The m+n partial derivatives of f (x; y) are then de�ned in terms of the previous
partial derivatives as

@m+nf

@xm @yn
=
@

@x

@

@y

�
@m+n�2f

@xm�1@yn�1

�
when f (x; y) and its partial derivatives are continuous on a region through the
m+ n order.
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EXAMPLE 8 Find fxxyy if f (x; y) = x4y4:

Solution: It is easy to show that fxx = 12x2y4: Thus,

fxxy =
@

@y
fxx =

@

@y
12x2y4 = 48x2y3

and similarly,

fxxyy =
@

@y
fxxy =

@

@y
48x2y3 = 144x2y2

Moreover, we usually assume that f is su¢ ciently smooth at all points where
partial derivatives are de�ned so that mixed partials are independent of the
order of di¤erentiation. Indeed, notice that if f (x; y) = x4y4; then

fxyx =
@

@x
fxy =

@

@x
16x3y3 = 48x2y3

which is the same as fxxy in example 8. In addition, fxyxy = 144x2y2 = fxxyy:

Exercises
Find fx (x; y) and fy (x; y) for each of the following:

1. f (x; y) = x2 + y3 2. f (x; y) = x2 + 2xy + y3

3. f (x; y) = (x+ 2y)
2 4. f (x; y) =

�
x2 + 2y

�2
5. f (x; y) = x sin (y) 6. f (x; y) = ex ln

�
y2 + 1

�
7. f (x; y) = exp

�
�x2 � y2

�
8. f (x; y) = tan�1 (xy)

9. f (x; y) = x cos (xy) 10. f (x; y) = x sin (xy)
11. f (x; y) = yx 12. f (x; y) = xy

13. f (x; y) = x
x2+y2 14. f (x; y) =

R y
x
sin
�
t2
�
dt

Find fxx; fxy; fyx; and fyy for each of the following. Then show that the mixed
partials are the same.

15. f (x; y) = x2 + y3 16. f (x; y) = x2 + 2xy + y3

17. f (x; y) = (x+ 2y)
2 18. f (x; y) =

�
x2 + 2y

�2
19. f (x; y) = x sin (y) 20. f (x; y) = ex ln

�
y2 + 1

�
21. f (x; y) = x cos (xy) 22. f (x; y) = tan�1 (xy)
23. f (x; y) = yx 24. f (x; y) = xy
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Find the indicated derivative of the given function:

25. fxxy for f (x; y) = x
2 + y3 26. fxxy for f (x; y) = x

2 + 2xy + y3

27. fxyx for f (x; y) = (x+ 2y)
2 28. fyxy for f (x; y) =

�
x2 + 2y

�2
29. fxxyy for f (x; y) = x sin (y) 30. fxxxxxxxy for f (x; y) = e

x ln
�
y2 + 1

�
31. fxxxy for f (x; y) = y cos (xy) 32. fxyy for f (x; y) = sin (x) tan (xy)

33. A vibrating string has a displacement y = u (x; t) in cm at a distance x in
cm from one end and at time t in seconds, where

u (x; t) = 2 sin (120� (x� t))

How fast (in units of cm per sec) is the string vibrating at a horizontal distance
x = 1:2 cm from one end at time t = 2 seconds? At time t = 3 seconds?
34. Suppose that a string is attached at its endpoints x = 0 and x = l; for some
number l:

Suppose also that y = u (x; t) models the displacement at x in [0; l] of the string
at time t; where

u (x; t) = A cos (at) sin
��
l
x
�

with A and a constant.

1. (a) Show that u (0; t) = u (l; t) = 0 for all t: How does this relate to
u (x; t) being a model of a string?

(b) What is the rate of change of u (x; t) at x = l=2 at any given time?

35. The function u (x; t) = e�t sin2 (�x) + 32 models the temperature in �F
of a 1 foot long thin rod in which both ends are held at the freezing point at
all times t. How fast is the temperature decreasing at the midpoint of the rod
when t = 0? When t = 1? When t = 2?
36. The function u (x; y; t) = 2 sin (3x) sin (4y) cos (5t) models the displace-
ment u in cm of a vibrating rectangular membrane at time t in seconds and at
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a point (x; y) on the membrane. How fast is the displacement of the membrane
above the point (1; 1) changing with respect to time at t = 1 seconds?
37. It can be shown that an ideal gas with �xed mass has an absolute temper-
ature R; a pressure P; and a volume V that satis�es

T = kPV

where k is a constant. How fast does the temperature T change with respect to
the volume V ?
38. The total resistance R produced by two resistors with resistances R1 and
R2; respectively, satis�es

R =
R1R2
R1 +R2

What is the rate of change of the total resistance R with respect to the resistance
R1?
39. If two planets with masses M and m are located at the points (x; y; z) and
(0; 0; 0) ; respectively, then the potential energy of their mutual gravitational
attraction is given by

� (x; y; z) = G
Mmp

x2 + y2 + z2

where G is the universal gravitational constant. At what rate is the potential
energy changing with respect to x? With respect to y?
40. A Cobb-Douglas production function is a function of the form P = bL�K�

where b; �; and � are constants. What is the rate of change of P with respect
to L? With respect to P?
41. Suppose we consider f (x; y) = x2 + y2:

1. (a) What is the slope of z = f (x; y) for (p; q) = (1; 2) in the x-direction?
in the y-direction?

(b) What curve is formed by the intersection of the plane y = 2 with
the surface z = x2 + y2? How does it relate to fx (1; 2)?

(c) What curve is formed by the intersection of the plane x = 1 with
the surface z = x2 + y2? How does it relate to fy (1; 2)?

42. Suppose we consider f (x; y) = x2 + xy:

1. (a) What is the slope of z = f (x; y) for (p; q) = (1; 2) in the x-direction?
in the y-direction?

(b) What curve is formed by the intersection of the plane y = 2 with
the surface z = x2 + y2? How does it relate to fx (1; 2)?

(c) What curve is formed by the intersection of the plane x = 1 with
the surface z = x2 + y2? How does it relate to fy (1; 2)?
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43. If f (x; y) = g (x)+h (y) ; then what is _fx and fy? What is the equation in
x and z of the curve formed by the intersection of z = f (x; y) with the vertical
plane y = q? with the vertical plane x = p? How are these curves related to
fx (p; q) and fy (p; q) ; respectively?
44. If f (x; y) = g (x)+h (y) ; then what is _fx and fy? What is the equation in
x and z of the curve formed by the intersection of z = f (x; y) with the vertical
plane y = q? with the vertical plane x = p? How are these curves related to
fx (p; q) and fy (p; q) ; respectively?
45. If fx and fy both exist, how can the limit

lim
h!0

f (x+ h; y)� f (x; y + h)
h

be expressed in terms of the 1st partial derivatives of f?
46. Write to Learn: Write a short essay in which you use the following steps
to show that

f (x; y) =

(
x2y�y2x
x+y if (x; y) 6= (0; 0)
0 if (x; y) = (0; 0)

is continuous at (0; 0) ; that fx (x; y) and fy (x; y) are continuous at (0; 0) ; but
that

fxy (0; 0) 6= fyx (0; 0)
1. (a) Show that if (x; y) 6= (0; 0) ; then

f (x; y) =
x� y
1
x +

1
y

and correspondingly

lim
(x;y)!(0;0)

f (x; y) = lim
(x;y)!(0;0)

x� y
1
x +

1
y

= 0

(b) Show that if (x; y) 6= (0; 0) ; then

fx (x; y) =
y
�
x2 + 2xy � y2

�
(x+ y)

2

and explain why that as a result, we have

lim
(x;y)!(0;0)

fx (x; y) = 0

(c) De�ne fx (0; 0) = 0 and then evaluate

fxy (0; 0) = lim
h!0

fx (0; 0 + h)� fx (0; 0)
h

(d) Repeat (b) and (c) beginning with the fact that

fy (x; y) =
x
�
x2 � 2xy � y2

�
(x+ y)

2

The outcome should be that fyx (0; 0) is not the same as fxy (0; 0) :

12


