Find a number k for which u =
á1,2,1
ñ is perpendicular to v =
ák,3,4
ñ.
Solution: u·v = k+6+4 = k+10. Thus, u·v = 0 implies that k = -10.
Find the area of the triangle whose vertices are P1(0,0,0) , P2( 1,1,0) , P3( 1,1,4) .
Solution: The vectors are u =
á1,1,0
ñ and v =
á 1,1,4
ñ .
Their cross product is u×v =
á 4,-4,0
ñ , so that the area is
A =
1
2
|| u×v|| =
1
2
16+16+0
= 2Ö2
Find the equation of the plane through the points P1(0,0,0) , P2( 2,1,5) , and P3( -1,1,2) .
Solution: The vectors are u =
á2,1,5
ñ and v =
á -1,1,2
ñ , so
that u×v =
á -3,-9,3
ñ . Thus, the
equation of the plane is
-3( x-0) -9( y-0) +3( z-0) = 0
so that in functional form we have z = x+3y.
Find the xy-equation and sketch the graph of the curve
r( t) =
á cos( 2t) ,sin(t)
ñ , tin
é ë
0,
p
2
ù û
Solution: Since cos(2t) = 1-2sin2(t), we have x = 1-2y2. Moreover, r(0) =
ácos(0) ,sin(0)
ñ = (1,0)
and r( p/2) = ( cos(p) ,sin(p/2) ) = (-1,1) . Thus, the parameterization is the section of the curve x = 2y2-1 from (1,0) to ( -1,1) .
Find the cartesian equation of the parametric curve
r( t) =
á sin2( t) ,cos( t)
ñ , tin [ 0,p]
Then sketch the curve showing its orientation and its endpoints.
Solution: Since cos2( t) +sin2( t) = 1, we have y2+x = 1 or x = 1-y2. Moreover, r(0) =
á 0,1
ñ and r( p) =
á 0,-1
ñ .
Find the velocity, speed, and acceleration of the curve with parameterization
r( t) =
á t,t2,t3
ñ
Solution: The velocity is v( t) =
á1,2t,3t2
ñ , the acceleration is a( t) =
á 0,2,6t
ñ , and the speed is
v =
1+4t2+9t4
If a rock is thrown into the air near the earth's surface with
initial velocity v( 0) =
á16,0,64
ñ feet per second and initial position r( 0) =
á0,0,6ñ feet, then what is the
maximum height of the rock if air resistance is ignored?
Solution: Since a( t) =
á0,0,-32
ñ , we must have v( t) = òa( t) dt =
á 0,0,-32t
ñ+
á C1,C2,C3
ñ . Moreover, v(0) =
á 16,0,64
ñ =
á 0,0,0ñ+
á C1,C2,C3
ñ , so that v(t) =
á 16,0,64-32t
ñ . Similarly, r( t) = òv( t) dt and the initial
condition lead to
r( t) =
á 16t,0,64t-16t2+6
ñ
As a result, v·a = 0 when 64-32t = 0, or when t = 2. Thus, the
maximum height is
64·2-16·22+6 = 70 feet
The acceleration due to gravity is 12.2 feet per second per second
at the surface of Mars. Find the position function r(t) of an object with initial velocity v0 =
á30,0,40
ñ and initial position r0 =
á0,0,0
ñ .
Solution: v( t) = ò
á0,0,-12.2
ñ dt =
á 0,0,-12.2t
ñ +v0 =
á 0,0,-12.2t
ñ +
á 30,0,40
ñ =
á 30,0,40-12.2t
ñ . Integrating again yields
r( t)
=
ó õ
v( t) dt
=
ó õ
á 30,0,40-12.2t
ñ dt
=
á 30t,0,40t-6.1t2
ñ +r0
=
á 30t,0,40t-6.1t2
ñ
Find the arclength and the unit tangent vector of the curve
r( t) =
á 3sin( t) ,5cos(t) ,4sin( t)
ñ , tin [ 0,2p]
Solution: v( t) =
á 3cos(t) ,-5sin( t) ,4cos( t)
ñ , so
that the speed is
v
=
9cos2( t) +25sin2( t) +16cos2( t)
=
25cos2( t) +25sin2( t)
=
5
Thus, T(t) =
á 3/5 cos(t), -sin(t) , 4/5 cos(t)
ñ and the
arclength is
L =
ó õ
2p
0
vdt =
ó õ
2p
0
5dt = 10p
Find the unit normal N for the curve
r( t) =
á sin( t3) ,t3,cos( t3)
ñ
Solution: To begin with, v( t) =
á3t2cos( t3) ,3t2,3t2sin( t3)
ñ , so that the speed is
v =
Ö
9t4cos2( t3) +9t4+9t4sin2(t3)
= 3Ö2t2
Thus, the unit tangent vector is T( t) =
ácos( t3) /Ö2, 1/Ö2, sin( t3) /Ö2
ñ and
dT
dt
=
-3t2
Ö2
sin(t3) ,0,
-3t2
Ö2
cos( t3)
from which we find that the normal vector is N( t) =
á -sin( t3) ,0,-cos( t3)
ñ .