
Components of Acceleration

Part 1: Curvature and the Unit Normal

In the last section, we explored those ideas related to velocity�namely, distance,
speed, and the unit tangent vector. In this section, we do the same for acceler-
ation by exploring the concepts of linear acceleration, curvature, and the unit
normal vector.
Thoughout this section, we will assume that r (t) parameterizes a smooth

curve and is second di¤erentiable in each component. Thus, its unit tangent T
satis�es kT (t)k = 1; which implies that T (t) �T (t) = 1: Di¤erentiation yields

d

dt
(T (t) �T (t)) =

d

dt
1

dT

dt
�T+T � dT

dt
= 0

2T � dT
dt

= 0

That is, the derivative of T is orthogonal to T:
We de�ne the unit normal vector N to be

N =
1

kdT=dtk
dT

dt
(1)

when it exists. Thus, N is a unit vector which is orthogonal to T

or alternatively, T0 = kT0k N:

EXAMPLE 1 Find the unit normalN to the helix r (t) = h4 cos (t) ; 4 sin (t) ; 3ti

Solution: Since the velocity is v = h�4 sin (t) ; 4 cos (t) ; 3i ; the
speed is

v =

q
16 sin2 (t) + 16 cos2 (t) + 9 =

p
9 + 16 = 5

and consequently the unit tangent vector is

T =
1

v
v =

�
�4
5
sin (t) ;

4

5
cos (t) ;

3

5

�
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The derivative of the unit tangent vector is

dT

dt
=
d

dt

�
�4
5
sin (t) ;

4

5
cos (t) ;

3

5

�
=

�
�4
5
cos (t) ;

�4
5
sin (t) ; 0

�
which has a length ofdTdt

 =
r
16

25
cos2 (t) +

16

25
sin2 (t) + 02 =

4

5

Thus, the unit normal is

N =
1

kdT=dtk
dT

dt
=

1

4=5

�
�4
5
cos (t) ;

�4
5
sin (t) ; 0

�
which simpli�es to N = h� cos (t) ;� sin (t) ; 0i :

T

N

If a curve r (s) is parameterized by its arclength variable s; then the curvature
of the curve is de�ned

� =

dTds


For any other parameterization r (t) ; we notice thatdTdt
 = dTds ds

dt

 = �v (2)
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since v = ds=dt: Thus, in general the curvature of a curve is given by

� =
1

v

dTdt


Since T0 = kT0k N; equation (2) implies that

dT

dt
= �v N (3)

However, as we will soon see, these formulas only de�ne �; they are not neces-
sarily the best means of computing �:

Check your Reading: Is N the only unit vector orthogonal to T at a given
point on the curve?

The Decomposition of Acceleration

Since a curve�s velocity can be written v = vT where v is the speed and T is
the unit tangent vector, the acceleration for the curve is

a =
d

dt
(vT) =

dv

dt
T+ v

dT

dt
(4)

Moreover, if we now combine (4) with (1) and (3) for dT=dt, then we �nd that
the acceleration of a curve parameterized by r (t) is

a =
dv

dt
T+ �v2N (5)

The quantity aT = dv=dt is the rate of change of the speed and is called either
the linear acceleration or the tangential component of acceleration because it
measures the acceleration in the direction of the velocity.
The quantity aN = �v2 is called the normal component of acceleration

because it measures the acceleration applied at a right angle to the velocity.
Speci�cally, the normal component of acceleration is a measure of how fast the
direction of the velocity vector is changing.
Moreover, since a �T = dv=dt; the decomposition (5) implies that

kak2 = a2T + a2N = (a �T)
2
+ �2v4

Thus, �2v4 = kak2 � (a �T)2 ; so that

� =

q
kak2 � (a �T)2

v2
(6)

which does not require the calculation of a cross product.
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EXAMPLE 2 Find the curvature of the curve parameterized by

r (t) = hsinh (t) ; t; cosh (t)i

Solution: The velocity is v (t) = hcosh (t) ; 1; sinh (t)i ; so that the
speed is

v =

q
cosh2 (t) + 1 + sinh2 (t) =

q
2 cosh2 (t) =

p
2 cosh (t)

and the unit tangent is

T =
1p

2 cosh (t)
hcosh (t) ; 1; sinh (t)i

The derivative of v (t) then yields the acceleration,

a (t) = hsinh (t) ; 0; cosh (t)i

and the dot product a �T is given by

a �T = 1p
2 cosh (t)

(2 sinh (t) cosh (t)) =
p
2 sinh (t)

Thus, (6) implies that the curvature is

� =

q
sinh2 (t) + cosh2 (t)� 2 sinh2 (t)

22 cosh2 (t)
=

q
cosh2 (t)� sinh2 (t)
22 cosh2 (t)

=
1

4 cosh2 (t)

since cosh2 (t)� sinh2 (t) = 1:

Indeed, if the speed v is constant, then dv=dt = a �T = 0 and (6) reduces to

� =

q
kak2

v2
=
a

v2
(7)

where a is the magnitude of the acceleration. That is, the curvature of an object
moving at a constant speed along a curve is proportional to the magnitude of
the acceleration.

EXAMPLE 3 Find the linear acceleration and curvature of the
helix

r (t) = h3 cos (t) ; 3 sin (t) ; 4ti
Solution: The velocity and acceleration are, respectively, given by

v (t) = h�3 sin (t) ; 3 cos (t) ; 4i ; a = h�3 cos (t) ;�3 sin (t) ; 0i
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It follows that the speed is given by

v =

q
9 sin2 (t) + 9 cos2 (t) + 16 = 5

Thus, we can use (7). Since a = 3; the curvature is thus

� =
a

v2
=
3

25

Finally, since v is parallel to T; the decomposition (5) implies that

v � a = dv

dt
(v �T) + kv2 (v �N) = �v2 (v �N)

Since v and N are orthogonal, it follows that kv �Nk = v � 1 � sin (�=2) = v; so
that

kv � ak = �v2 kv �Nk = �v3

Finally, solving for � yields another means of computing curvature:

� =
kv � ak
v3

(8)

Check your Reading: Is � ever 0 in example 5?

Curvature in the Plane

In order to better understand curvature, let�s explore it for 2-dimensional curves.
If r (t) is the parameterization of a 2-dimensional curve, then its velocity can be
written in polar form as

v = hv cos (�) ; v sin (�)i

Factoring out the v then leads to v = v hcos (�) ; sin (�)i ; which reveals that the
unit vector is

T = hcos [� (t)] ; sin [� (t)]i
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As a result, the derivative of T is given by

dT

dt
=

�
d

dt
cos [� (t)] ;

d

dt
sin [� (t)]

�
=

�
� sin [� (t)] d�

dt
; cos [� (t)]

d�

dt

�
=

d�

dt
h� sin (�) ; cos (�)i

Since h� sin (�) ; cos (�)i is also a unit vector, the magnitude of dT=dt isdTdt
 = d�

dt
(9)

which via the chain rule is equivalent to

�v =

dTdt
 = d�

ds

ds

dt
(10)

where s (t) is the arclength function of r (t) : That is, the curvature of a 2-
dimensional curve is given by

� =
d�

ds

or equivalently, moving a short distance ds along the curve causes a change d�
in the direction of the velocity vector, where d� = �ds:

EXAMPLE 4 Find the curvature of the circle of radius 3 parame-
terized by

r (t) = h3 cos (t) ; 3 sin (t)i
Solution: Since the velocity is v (t) = h�3 sin (t) ; 3 cos (t)i ; the
speed is

v =

q
9 sin2 (t) + 9 cos2 (t) = 3

As a result, the unit tangent vector is

T (t) = h� sin (t) ; cos (t)i

from which it follows that

dT

dt
= h� cos (t) ;� sin (t)i

As a result, the curvature is

� =
1

v

dTdt
 = 1

3

q
cos2 (t) + sin2 (t) =

1

3
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As example 2 illustrates, curvature is closely related to the radius of a circle.
Indeed, the osculating circle of a curve is the circle with radius

R =
1

�
or equivalently R =

ds

d�

and with center
Center (t) = r (t) +RN (t)

Consequently, the osculating circle is practically the same as a small section of
the curve,

This allows us to interpret ds = Rd� to mean that a short distance ds along the
curve is practically the same as the small arc with angle d� on the osculating
circle.
Moreover, since working the osculating circle requires the unit normal vector

N; we often use

� =
1

v

d�

dt
=
1

v

dTdt


to calculate the curvature (since we must calculate kdT=dtk already in order to
obtain N ).

EXAMPLE 5 What is the curvature of the curve r (t) = hln jcos tj ; ti
for t in [��=3; �=2] :

Solution: The velocity is

v =

�
1

cos (t)

d

dt
cos (t) ; 1

�
=

�
� sin (t)
cos (t)

; 1

�
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which reduces to v = h� tan (t) ; 1i : Thus, the speed is

v =
q
1 + tan2 (t) =

p
sec2 (t) = sec (t)

since sec (t) > 0 for t in [��=3; �=2] : The unit tangent is conse-
quently

T =
1

sec (t)
h� tan (t) ; 1i = h� sin (t) ; cos (t)i

and the derivative of the unit tangent is

dT

dt
= h� cos (t) ;� sin (t)i

(which is also the unit normal vector N ). As a result, (??) implies
that the curvature is

� =
1

v

dTdt
 = 1

sec (t)

q
cos2 (t) + sin2 (t) = cos (t)

It follows that R = 1=� and that

Center (t) = r (t) +RN (t)

= hln jcos tj ; ti+ 1

cos (t)
h� cos (t) ;� sin (t)i

= hln jcos tj � 1; t� tan (t)i

Indeed, the osculating circle itself at a �xed time t is given by

Osc (�) = Center (t) +R hcos (�) ; sin (�)i
= hln jcos tj � 1; t� tan (t)i+ sec (t) hcos (�) ; sin (�)i
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This is illustrated in the applet below:

If r (t) parameterizes a straight line, then its unit tangent is constant, and corre-
spondingly, its curvature is � = 0: To illustrate, the curve r (t) = hln jcos (t)j ; 1i
in example 3 approaches a horizontal asymptote (i.e., a straight line) as t ap-
proaches �=2; and likewise, the curvature approaches 0 as t approaches �=2:
Since the relationship of the curvature and the radius of the osculating circle is

� =
1

radius of the osculating circle

the osculating circle becomes in�nitely large as � approaches 0.

Check your Reading: How is the curvature in example 2 related to the radius
of the circle?

Torsion and the Frenet Frame

Given a curve r (t) in space, the binormal vector B is de�ned

B = T�N
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Thus, B is a unit vector normal to the plane spanned by T and N at time t:

Since both v and a are in the plane spanned by T and N; the binormal vector
B is also the unit vector in the direction of v � a: That is,

B =
v � a
kv � ak

Moreover, if B is constant, then the curve r (t) must be contained in a plane
with normal B:

EXAMPLE 6 Find B for r (t) = hsin (t) ; cos (t) ; sin (t)i : Is r (t) in
a plane?

Solution: Since v (t) = hcos (t) ;� sin (t) ; cos (t)i and a (t) = h� sin (t) ;� cos (t) ;� sin (t)i ;
their cross product is

v � a =
����� � sin (t) cos (t)

� cos (t) � sin (t)

���� ; ���� cos (t) cos (t)
� sin (t) � sin (t)

���� ; ���� cos (t) � sin (t)
� sin (t) � cos (t)

�����
which simpli�es to

v � a =


sin2 (t) + cos2 (t) ; 0;� cos2 (t)� sin2 (t)

�
= h1; 0;�1i

Since kv � ak =
p
2; the unit binormal is

B =

�
1p
2
; 0;

�1p
2

�
Moreover, B is constant, so r (t) is con�ned to a single plane.
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Finally, the de�nition B = T�N implies that

dB

dt
=
dT

dt
�N+T�dN

dt

However, dT=dt is parallel to N; so that dT=dt�N = 0 and

dB

dt
= T�dN

dt

Thus, dB=dt must be perpendicular to T: Moreover, the fact that B (t) is a unit
vector for all t implies that dB=dt is also perpendicular to B: Thus, dB=dt is
parallel to N; which means that

dB

dt
= �� vN (11)

where the constant of proportionality � is known as the torsion of the curve. It
follows that

� = �1
v
N � dB

dt

Torsion is a measure of how much the plane spanned by T and N "osculates"
as the parameter increases. For example, if r(t) is a curve contained in a single
�xed plane, then B must be constant and consequently, the torsion � = 0. In
fact, � = 0 only if motion is in a plane. More properties of � will be explored
in the exercises. Torsion will be explored in more detail in the exercises.

Exercises
Find the unit normal N and the curvature � (t) of each of the following curves:

1. r (t) = h3t; 4t+ 3i 2. r (t) = h5t+ 2; 12t+ 3i
3. r (t) = hcos (2t) ; sin (2t)i 4. r (t) = h3 cos (�t) ; 3 sin (�t)i
5. r (t) = h3 sin (t) ; 3 cos (t) ; 4ti 6. r (t) =



t3; 3t2; 6t

�
9. r (t) =



3 sin

�
t2
�
; 4 sin

�
t2
�
; 5 cos

�
t2
��

10. r (t) =


e2t; 2et; t

�
Find the linear acceleration dv=dt and the curvature � (t) of each of the following
curves:

11. r (t) = hcos (2t) ; sin (2t)i 12. r (t) = h3 cos (�t) ; 3 sin (�t)i
13. r (t) =

D
t; 2t3=2; 2 (1� t)3=2

E
14. r (t) = h2t; 3t; 4t+ 1i

15. r (t) =
D
2 cos

�
t3=2

�
; 2 sin

�
t3=2

�
; 2 (10� t)3=2

E
16. r (t) =

D
cos

�
t3=2

�
; sin

�
t3=2

�
; (4� t)3=2

E
17. r (t) = h3t+ 4 sin (t) ; 4t� 3 sin (t) ; 5 cos (t)i 18. r (t) =



t+ sin (t) ; t� sin (t) ;

p
2 cos (t)

�
19. r (t) = hsin (t) ; cosh (t) ; cos (t)i 20. r (t) =



sin2 (t) ; sin2 (t) ; cos (2t)

�
21. r (t) =



e2t; 2et; t

�
22. r (t) =



t2; 2t; ln (t)

�
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Find the unit binormal and the torsion of each curve. Is the curve restricted to
a plane?

23. r (t) =


t; t; t2

�
24. r (t) = h2t; 3t; 4t+ 1i

25. r (t) = h3 sin (t) ; 3 cos (t) ; 4ti 26. r (t) =


3 sin

�
t2
�
; 3 cos

�
t2
�
; 4t2

�
27. r (t) = h3 sin (t) ; 5 cos (t) ; 4 sin (t)i 28. r (t) = hsin (t) ; cosh (t) ; cos (t)i

29. Find the equation of the line between the points P1 (1; 2; 1) and P2 (2; 3; 1) :
Then �nd its linear acceleration dv=dt and its curvature. What is the curvature
of a straight line and why?
30. Show that the graph of the vector-valued function

r (t) =


sec2 (t) ; tan2 (t)

�
is a straight line. Then �nd its acceleration and its curvature.
31. Show that the graph of the vector-valued function

r (t) =


4 cos2 (t) ; 2 sin (2t)

�
is a circle by showing that it has constant curvature. (Hint: 4 cos2 (2t) � 2 =
2
�
2 cos2 (t)� 1

�
)

32. An ellipse with semi-major axis a and semi-minor axis b

can be parameterized by

r (t) = ha cos (t) ; b sin (t)i

for t in [0; 2�] : Show that the curvature of the ellipse is

� (t) =
ab�

a2 sin2 (t) + b2 cos2 (t)
�3=2

What is the curvature of the ellipse when a = b?
33. The function r (t) =



t; t3

�
parameterizes the curve y = x3: Find the

curvature of the curve and determine where it is equal to 0. What is signi�cant
about this point on the curve?
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34. Show that any curve with zero curvature must also have zero torsion.
35. Show that if r (t) = hx (t) ; y (t)i , then the curvature at time t is given by

� (t) =
jx0y00 � x00y0jh
(x0)

2
+ (y0)

2
i3=2

36. Use the fact that r (t) = ht; f (t)i parameterizes the curve y = f (x) to show
that the curvature of the graph of a second di¤erentiable function f (x) is

� (x) =
jf 00jh

1 + (f 0)
2
i3=2

37. Explain in your own words why at any point on a 3-dimensional smooth
curve, the osculating circle must be in the plane with B as a normal.
38. The curve r (t) = hR cos (t) ; R sin (t)i is a circle centered at the origin.
Compute the center of its osculating circle. Is it what you expected?
39. Use the triple vector product to prove that

T = N�B and N = B�T

and then use the result to show that

� =
1

v
B � dN

dt

40. The general form of a helix which spirals about the z-axis is given by

r (t) = ha cos (t) ; a sin (t) ; bti

where a > 0 and b > 0: Compute the curvature � and torsion � of the helix.
How are they related to a and b:
41. In this problem, we consider the �compressed helix�

r (t) =


cos (t) ; sin (t) ; e�t

�
1. (a) What happens to the helix as t approaches 1?

(b) What value does � (t) approach as t approaches 1?
(c) What value does � (t) approach as t approaches 1?

42. Suppose that r (t) is the position at time t of a planet as it orbits a sun
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located at the origin of a 3-dimensional coordinate system.

The angular velocity of the planet is L = r � v and the acceleration of the
planet is

a =
�GM
r3

r

where M is the mass of the sun and G is the universal gravitational constant.
Show that

v � a = GM

r3
L

and then use this result to express the curvature of the planet�s orbit as a
function of r; v; G; M; and L:
43. Show that if r (s) is parameterized by the arclength variable (that is, v = 1);
then

v = T; a = N; B = v � a

and that

� =

dTds
 and � =

dB

ds
�N

44. Write to Learn: Write a short essay in which you show that a curve r (t)
has zero torsion (i.e., � = 0 ) if and only if r (t) is a motion in a �xed plane.
45. Write to Learn: Write a short essay discussing the relationship between
an automobile�s odometer, speedometer, and accelerator. Does any instrument
in an automobile measure the curvature of the automobile�s path? Or are all
the instruments and controls in an automobile related strictly to the linear
components of acceleration?
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