Part 2: The Triple Scalar Product

If r = á r1,r2,r3 ñ , u = á u1,u2,u3 ñ , and v = á v1,v2,v3 ñ , then (3) implies that
r · ( u×v) =
r1
r2
r3
u1
u2
u3
v1
v2
v3
However, by (4) we have
We call this identity the triple scalar product:
r · ( u×v)  =  ( r×u) · v

The triple scalar product is often used to obtain other properties of the cross product. For example, u×u = 0 implies that
u · ( u×v) = ( u×u) · v = 0
Since v · ( u×v) = -v · ( v×u) , the same calculation shows that that u×v is orthogonal to v.        

Theorem 3.2: u×v is orthogonal to u and to v.       

That is, (u×v) ^ u and (u×v) ^ v .

EXAMPLE 3    Show that u×v is orthogonal to u when u = á 2,3,7 ñ and v = á 1,4,2 ñ .       

Solution: To begin with, let us notice that
u×v
=


3
7
4
2
,  
7
2
2
1
,  
2
3
1
4


=
á 6-28, 7-4, 8-3 ñ
=
á -22, 3, 5 ñ
Now let's compute u · ( u×v) :
u·( u×v) = á2,3,7 ñ · á -22,3,5 ñ = -44+9+35 = 0
Vectors u, v, and u×v are shown below:

Maple/javaview image

As another example, consider that
i×j =   
0
0
1
0
 ,
0
1
0
0
,
1
0
0
1
= á 0,0,1 ñ
That is, i×j = k, which is perpendicular to both i and j. Indeed, it can be shown that
i×j = k
j×i = -k
i×i = 0
j×k = i
k×j = -i
j×j = 0
k×i = j
i×k = -j
k×k = 0
(5)
The identities (5) can be memorized using the mnemonic below:
 
That is, the cross product of any two vertices is the third vertex, with the sign determined by the implied direction (positive if counterclockwise, negative otherwise).       

EXAMPLE 4    Evaluate u×v when u = i-2j and v = j+k. Then show that ( u×v) ^ u and ( u×v) ^ v        

Solution: To begin with, we use property iii):
u×v
=
( i-2j) ×( j+k)
=
i×( j+k) -2j×( j+k)
=
i×j+i×k-2j×j-2j×k
We then use table (5) to finish the computation:
u×v = k-j-2·0-2i = -2i-j+k
Notice that u·( u×v) = 1(-2) -2( -1) = 0 and
v · ( u×v) = 1( -1)-1( 1) = 0

 

Check your Reading: What is ( i×j) ×k?