Uniform Circular Motion

Newton was fortunate in that the moon in orbit about the earth and the first five
planets in orbit about the sun are almost in uniform circular motion, which is
motion in a circle with a constant speed. In particular, let us assume that the
radius of a uniform circular motion is r and that the period of the orbit—i.e., the
time it takes to complete one revolution—is T'. If the point (x,y) is on the orbit,
then in polar coordinates we have

x=rcos(f) and y=rsin(0)
As a result, the position vector is of the form
r =(rcos(f),rsin(0)) =r {(cos(0),sin (6))

where 6 is a function of the time parameter ¢. Often we let u (6) = (cos (6) ,sin (0))
so that we have
r=ru(f)

Uniform circular is motion in a circle at a fixed rate of change, which is to say

that &0
pri C

where C is a constant. As a result, we must have 0 (t) = Ct + 60y, where 6,
is the angle at time ¢ = 0. Since T is the period of the orbit, it follows that
0 (T) =27 + 0o, so that

2
9+ 0y =CT +60,, C= 7”
As a result, we have 0 (t) = 27t/p, so that the position vector for uniform circular

motion is
27Tt
r=rul|—
T

where 7 is the radius of the circular orbit and T is the period of the orbit.

EXAMPLE 1 Find the parameterization of the motion of a satellite
which is 100 miles above the earth and has a period of T' = 5234. 14
seconds, or T' = 1 hour, 27 minutes and 14 seconds.

Solution: Since the radius of the earth is R = 3963.21 miles, the
satellite’s orbit is given by

o7 27 . 27
r (t) = 4063.21 u (m t) = 4063.21 <COS (5234. 14 t) S (5234. 14 t>>

Since u (6) is a unit vector, its derivative u’ (9), which is given by
u’ (0) = (—sin (0),cos (0))

is orthogonal to u (0). It is also a unit vector. Moreover,

d d . . do db
7 (0) = pr (cos (0) ,sin (8)) = <— sin (0) il (0) E>



Thus, if we factor out df/dt, then it is clear that
d , o do
a0 =u'(0)

Likewise, we leave it to the reader to show that

d_, do
' (0) = —u () = (0.1)

This allows us to compute the velocity and acceleration of an object in uniform
circular motion.

EXAMPLE 2 Find the velocity and acceleration of the satellite whose
orbit is

2w
r(t) =4063.21 u (5234' T t)

Solution: The chain rule implies that the velocity is

2m d 2w 2m
=406321 0 | ———t | — =4. '
v(t) =4063.2L u <5234. 14 t> dt <5234. 14 t> BT70u (5234. 14 t)

The acceleration vector is given by

dv d 2m
= 48766 o
a(l) =g = 487665 u (5234. 14 t)
Since u” = —u, we have

a — 48766 2w y i 2w ) = —4.8766 - 21 27 y

T U\523a.14 ")t \5234.14 °) T " 5234124 '\ 523414
EXAMPLE 3 Consider that the moon is R,, = 238,957 miles from
the center of the earth and that the period of the moon’s orbit is

p = 27.321661 days = 2, 360,591. 5104 sec

What is the parameterization of the Moon’s orbit about the earth?
What is the magnitude of the acceleration of the Moon in its orbit
about the earth?

Solution: If we assume that the moon has a circular orbit about the
earth, then

2
r(t) = 238,957 u (2, 360,591.5104 t)

As a result, the velocity and acceleration are, respectively,
27 (238, 957) o 2m y
2,360,591.5104 2,360, 591.5104
— (2m)? (238,957 2
a(t) — —2m) (238, )zu( u t)
(2,360,591.5104) 2,360, 591.5104

Since u is a unit vector, it follows that the magnitude of the accelera-
tion of the Moon in its orbit about the earth is
(27)% (238, 957)

t
a= 5 = 8.93866 x 10—3f—2
(2,360,591.5104) sec

v ()




Check Your Reading: The earth has an average radius of 3963.21 miles. How
high above the earth is the satellite in example 17

The Inverse Square Law

Once Galileo’s mechanics had been generalized into the laws of motion, and once
calculus had been developed as the setting for mathematical models of physical
processes, Newton was able to deduce his law of universal gravitation with an
approach similar to the one we use below.

To begin with, let us notice that the amount of gravity an object experiences
depends only on its distance from the gravitational source (i.e., the weight of an
object does not depend on whether it is in Paris or Pittsburgh). Thus, if r is
the distance from an object to the center of the earth, then the magnitude of the
gravitational force acting on the object is a function of r, which we denote by
F(r).

The question now becomes, “What does F' (r) look like mathematically?” First
off, we notice that as an object moves further from the earth, the gravitational
force acting on that object decreases. Indeed, since distant stars do not orbit the
earth, we can assume that F'(r) tends to zero as r approaches co. That is, we
must have

lim F(r)=0

T—00

As a result, the graph of F'(r) is a decreasing function of the form
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Because F'(r) has physical units, it must be a rational function of r. (that is,
units like “the square root of a foot” or “cosine of a yard” do not make sense).
Thus, we assume that the force is of the form

mk
F(r)= (0.2)

T?L

where k is a constant, m is the mass of the object and n is a positive integer. Our
job now is to determine n and k.

We begin by noticing that an object at the earth’s surface is R = 3963. 21 miles
from the earth’s center, which translates into

5280 ft

R = 3963.21 miles x =~ = 2.0926 x 107 feet
1 mile

The acceleration of the object due to gravity is g = 325‘%. Since force is the
product of mass and acceleration, the force of gravity acting on the object is mg,
which is the same as 32m. Substitution into (0.2) thus yields

mk
(2.09257 x 107)"

=32m or k=32 (2.09257 x 107)" (0.3)



Example 3 shows that the acceleration of the moon in its orbit about the
earth is 8.93866 x 1073 Ee%v so that the force of gravity acting on the moon is
8.93866 x 10~3m. Since the moon is

R, = 238,957 miles x 5280-11 — 1.26160 x 10° ft

mile
from the earth, substitution into (0.2) yields

mk
(1.26169 x 109)"

= (8.93866 x 107*)m  or k= (8.93866 x 1073) (1.26169 x 10°)"

(0.4)
Combining (0.3) and (0.4) thus yields

32 (2.09257 x 107)" = (8.93866 x 107°%) (1.26169 x 10°)"
We then rewrite this as a cross-ratio,

(2.09257 x 107)"  8.93866 x 103
(1.26169 x 109)" 32

which in turn simplifies to

(2.09257 x 107

m) = 2.79333 x 1074

As a result, we have
(1.65854526 x 1072)" = 2.79332998 x 10~
which after applying the natural logarithm yields
nln (1.65854526 x 107%) = In (2. 79332998 x 10~ *)

whose solution is n = 1.996. Since n must be an integer, we round up to obtain
n=2.

This leads to Newton’s Law of Universal gravitation, which says that if two
bodies of mass m and M are located a distance r apart, then the magnitude of
the force of the gravitational attraction between them is

M
F| = G—~
.

where G = 6.67 x 107! Nm?/kg? is the universal gravitational constant. Equiv-
alently, Newton’s law says that the potential between the two bodies is

Mm
r

U=-G

(0.5)

We can also use geometry to show that any point source whose force spreads
with spherical symmetry will obey the inverse square law. This is because as the
force spreads, its intensity at a given distance r is spread uniformly across a sphere
of radius r. If the total force on any sphere centered at the origin is the same—as
would be expected with a constant source—then the force acting at a point is the
ratio of the total force to the area of the sphere, so that force at a point is inversely
proportional to r2. It is because the inverse square law is geometric in nature that
it applies to many different phenomena, including gravitational force, electrostatic
force, and radiation.



Check Your Reading: The earth has an average radius of 3963.21 miles. How
high above the earth is the satellite in example 17

The Inverse Square Law

These calculations only show us that the earth’s gravitational force satisfies an
inverse square law. However, we need to show that the inverse square law of
gravity is universal—i.e., every point with mass or point-mass produces an inverse
square gravitational force vector field. Thus, we rederive the law of gravity for an
arbitrary planet about the sun.

To begin with, let us again assume that the magnitude of the gravitational

force is
mk

F(r)

T.n

where 7 is the distance from the sun to the planet, m is the mass of the planet,
and k,n are constants which must be determined. Since F' = ma, the acceleration
of the planet due to the sun’s gravity is

L2

Tn
Applying the natural logarithm to both sides yields

In(a) =In(k) —nln(r)

Since k is constant, C' = In (k) is also constant, so that

In(a) =C —nln(r) (0.6)
Moreover, if we let Y =In (a) and X =1In(r), then we can rewrite (0.6) as
Y=C-nX

That is, Y and X are linearly related, which means that least squares can be used
to predict n and C. To do so, we need only know the distances to the planets and
their accelerations due to the sun’s gravity.

Fortunately, the orbits of the first five planets are nearly circular, which means
they can be modeled as uniform circular motions. Let us recall that uniform
circular motion is parametrized by

r(t) = <Rp Cos <2§t) , R, sin <2§t)> , tel0,p]

Two time derivatives yield an acceleration of

—4m%R, 2w —4n’R, . (27
a(t)=(—5—cos|—t|,—5—sin|—t
p p p p

As a result, the magnitude a of the acceleration vector is
_ 4m’R,
=

In the table below, the radii and periods of the 2"¢ through 6! planets are
used to compute the accelerations due to the sun’s gravity:

a (0.7)

2
Planet R,(AU)  p(days) a= 47;)2Rp
Venus 0.723 225 5.6381029 x 10~*
Earth 1 365 2.96328899 x 10~4
Mars 1.52 687 1.27142238 x 1074
Jupiter 2.5 4343 1.08838719 x 10~°
Saturn 9.54 10,767 3.2487679 x 1076



The data is then transformed using X =In(R,) and ¥ =In (a):

Planet X=In(R,) Y=In(a)

Venus -0.324346 -7.480793
Earth 0 -8.124041
Mars 0.418710 -8.970204
Jupiter 1.648659 -11.428820
Saturn 2.255493 -12.637234

The (X,Y) data set does appear to lie on a straight line.
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Application of the least squares algorithm to the (X,Y) predicts the linear
model
y = —2.00001 948052 — 8.12879 62272

(which has a Pearson’s r-value of » = 0.99998 ). That is, the model predicts that
n = 2.0000194805
and since n must be an integer, clearly we have n = 2. Moreover,
In (k) = —8.12879 62272

which implies that k& = 2.94923 0075 x 10~%. Thus, the acceleration of the planets
due to the sun’s gravity is

2.94923 0075 x 10~*
a= 2

(0.8)

Exercises

Find the position vector, the speed and the magnitude of the acceleration of the
uniform circular motion with radius v and period p. Convert all measurements to
feet and seconds.

1. 7 =2 feet, p=1 second 2. r =2 feet, p = 2 seconds

3. 1 =3 feet, p= 0.5 second 4. r =2. feet, p = 0.2 seconds

5. r=3963.21 miles, p = 24 hours 6. r=238,957 miles, p = 27.322 days

7. r=292,956,000 miles, p = 365.25 days
8. Show that if an object is in uniform circular motion with period p and radius

r, then
4y
a= pe

9. In this exercise, we estimate the radius of the earth and then use uniform
circular motion to determine the acceleration we feel due to the earth’s
spinning.



i. The sun rises in Knoxville at 7:14 a.m., but it rises in Nashville
about 11 minutes later. If the distance from Knoxville to
Nashville is 190 miles, then how fast in miles per minute is
the earth spinning?

ii. There are 24-60 = 1440 minutes in a day. Multiply 1440 by the
speed in the previous exercise to determine the circumference,
and then divide by 27 to obtain the radius of the earth. (Note:
We should be doing this at the equator.)

10. Kepler’s third law says that the square of the period is proportional to the
cube of the radius. That is,

p2 — /\T3
where A is a constant determined by the planet being orbited.

i. Use the vector parametrization of a satellite 100 miles above
the earth to determine .
ii. Use the vector parametrization of the moon to compute A\. Why
is it the same as the estimate in (a)?
iii. How high above the earth must a satellite be in order to be in
geosynchronous orbit? (Hint: what must its period be?)

11. Assume that the second through sixth planets have circular orbits, then we
can use the result in exercise 8 to complete the following table, where the
accelerations a are in units of Astronomical units per earth day per earth

day. ,
Planet R,(AU)  p(days) a= —47Tp2R P
Venus 0.723 225
Earth 1 365
Mars 1.52 687
Jupiter 2.5 4343
Saturn 9.54 10,767

12. Plot the data points (Rp,a) in the first and third columns of the first table.
Then graph the function in (0.8). Does the function appear to be a good fit
of the original data?

13. In the derivation above, we omitted Mercury because we now know that a
complete description of its motion requires general relativity, though Kepler’s
laws are a good approximation of Mercury’s orbit. Below is the data for the
first five planets. Transform using X and Y above, and then apply least
squares to the transformed data. What is the prediction for n? Is it still

close to 27

4m’R
Planet R,(AU)  p(days) a= sz L
Mercury 0.387 89 1.9288155 x 1073
Venus 0.723 225 5.6381029 x 10~*
Earth 1 365 2.96328899 x 10—+
Mars 1.52 687 1.27142238 x 1074
Jupiter 2.5 4343 1.08838719 x 107

14. Let n =2 in (0.3) and solve for k.



15. Let n =2 in (0.4) and solve for k.

16. The constant k is the product of the earth’s mass M and the universal
gravitational constant, G, which is equal to

Nm?

— —11
G =6.67x 1071 2

If £ is translated into metric units, then we have
N 2
k = 3.98866 x 104~

kg

Use this to determine the mass of the earth.



