LINEAR ALGEBRA COMPREHENSIVE EXAM

Fall 2010, Prepared by Dr. Robert Gardner November 19, 2010

NAME	STUDENT NUMBER	
Be clear and give all details.	Use symbols correctly (such as equal signs). The numbers in l	bold
faced parentheses indicate the n	umber of the topics covered in that problem from the Study Gu	ıide.
You may omit two numbered pr	roblems. Indicate which two problems you are omitting:	and
NO CALCULATORS!!!	Time limit: 3 hours.	

1. Express the solution of this system as a translation of a vector space:

$$2x_1 + x_2 - x_4 = 5
-5x_1 - 3x_2 - x_3 + x_4 = -7
5x_1 + 4x_2 + 3x_3 + 2x_4 = 6
x_1 + x_2 + x_3 + x_4 = 1$$

(A1, A2, A3, A7, B4)

2. Find the solution set of $A\vec{x} = \vec{b}$ where

$$A = \begin{bmatrix} 1 & -4 & 1 \\ 3 & -12 & 5 \\ 2 & -9 & -1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 8 \\ 26 \\ 14 \end{bmatrix}.$$

(A1, A7, B4)

- **3.** Consider the plane in \mathbb{R}^3 which contains the vectors [1,2,3] and [4,5,6] and passes through the point (7,8,9). Find the equation of the plane (in terms of x, y, and z coordinates) and express the plane as a translation of a vector space. **(B4, B12)**
- 4. Consider the inner product space $C_{-\pi,\pi}$ of continuous functions on $[-\pi,\pi]$ with the inner product of f and g defined as

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$$

In the vector space $C_{-\pi,\pi}$, find the angle between $\cos x$ and $\sin x$. (B8, B9, C15)

- 5. Show that \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less, is isomorphic to \mathbb{R}^3 (actually construct the isomorphism and verify that it is an isomorphism). (C12, C13, C15)
- **6.** Consider the vectors $\vec{v}_1 = x^2 + 2x + 3$, $\vec{v}_2 = 7x^2 5x + 2$, and $\vec{v}_3 = -4x^2 + 2x 9$ in \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less. Are these vectors linearly independent? Explain. (C5, C11, C15)
- 7. Find the orthogonal complement of span $\{[-1,2,0,3],[0,4,1,-2]\}$ in \mathbb{R}^4 . (C3, C18)
- 8. Transform the basis $\{(1,0,1),(0,1,2),(2,1,0)\}$ for \mathbb{R}^3 into an orthogonal basis using the Gram-Schmidt process. (C17, C19, C20, C21)
- 9. Find the eigenvalues (they are integers) and the eigenvectors of:

$$A = \left[\begin{array}{rrr} -2 & 0 & 0 \\ -5 & -2 & -5 \\ 5 & 0 & 3 \end{array} \right].$$

(A9, D14, D17, D18, D19)

10. Consider

$$A = \left[\begin{array}{cccc} 2 & 2 & 0 & 4 \\ 3 & 3 & 2 & 2 \\ 0 & 1 & 3 & 2 \\ 2 & 0 & 2 & 1 \end{array} \right].$$

Put A in a row echelon form, keeping track of how each row operation affects the determinant. Then calculate the determinant of A. (A4, D15)