LINEAR ALGEBRA COMPREHENSIVE EXAM

Fall 2013b, Prepared by Dr. Robert Gardner

December 6, 2013

NAME ______ STUDENT NUMBER _____

Be clear and **give all details**. Use symbols correctly (such as equal signs). The numbers in **bold** faced parentheses indicate the number of the topics covered in that problem from the Study Guide. No calculators and turn off your cell phones! You may omit two problems. Indicate which two problems you are omitting: _____ and ____. There is a three hour time limit.

1. Find the solution of $A\vec{x} = \vec{b}$ where

	1	-4			$\begin{bmatrix} -2 \end{bmatrix}$
A =	3	-13	0	and $\vec{b} =$	-10
	2	-9	-1		-8

and express the solution as a translation of a vector space. (A1, A7, B4)

- **2.** Prove that if \vec{x}_1 and \vec{x}_2 are both solutions to the homogeneous system of equations $A\vec{x} = \vec{0}$, then any linear combination of \vec{x}_1 and \vec{x}_2 is also a solution. (A9, C7)
- **3.** Find the projection of [1, 2, 1, 2] onto the plane x + y + z + w = 0. Explain your reasoning! (B3, B7, B8, C17, C19)
- 4. State the definition of vector space. (C1)
- 5. Find a basis for span $\{1, 4x + 3, 3x 4, x^2 + 2, x x^2\}$ in \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less. (A3, A4, C5, C6, C11, C15)
- 6. Use the Gram-Schmidt process to find an orthonormal basis for the subspace span $\{[1, 2, 0, 2],$ [2, 1, 1, 1], [1, 0, 1, 1] of \mathbb{R}^4 . (C17, C19, C20, C21)
- 7. Use the Schwarz Inequality, which states that for vectors \vec{v} and \vec{w} in an inner-product space, we have $|\langle \vec{v}, \vec{w} \rangle| \leq \|\vec{v}\| \|\vec{w}\|$, to prove the Triangle Inequality in an inner-product space. (B8, B10, C15)

8. Consider

$$A = \begin{bmatrix} 0 & 6 & 6 & 3 \\ 1 & 2 & 1 & 1 \\ 4 & 1 & -3 & 4 \\ 1 & 3 & 2 & 0 \end{bmatrix}.$$

Find the rank, a basis for the row space, and a basis for the column space. (A4, A5, D6, D10)

- 9. Prove that if λ is an eigenvalue of an n × n matrix A, then the set E_λ consisting of the zero vector together with all eigenvectors of A for this eigenvalue λ is a subspace of n-space. (C4, D17, D19)
- 10. Find the eigenvalues (they are integers) and the eigenvectors of (A9, D14, D17, D18, D19):

$$A = \begin{bmatrix} -2 & 0 & 0 \\ -5 & -2 & -5 \\ 5 & 0 & 3 \end{bmatrix}.$$