LINEAR ALGEBRA COMPREHENSIVE EXAM

Fall 2002, Prepared by Dr. Robert Gardner December 5, 2002

NAME			STUDENT N	NUMBER			
Be clear and giv	e all details	s. Use all s	symbols correctly	(such as	equal signs).	The bold	faced
numbers in paren	theses indica	te the numl	ber of the topics	covered in	that problem	from the	Study
Guide. No calcu	ılators!!! Yo	ou may omi	t two numbered	problems.	Indicate which	ch two pro	blems
you are omitting:	and	·					

1. Find the solution set of $A\vec{x} = \vec{b}$ where

$$A = \begin{bmatrix} 1 & -4 & 1 \\ 3 & -12 & 5 \\ 2 & -9 & -1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 8 \\ 26 \\ 14 \end{bmatrix}.$$

(A1, A7, B4)

- 2. Give three conditions on $n \times n$ matrix A which would (each) imply that the system $A\vec{x} = \vec{b}$ has a unique solution. Give two conditions which would (each) imply that $A\vec{x} = \vec{b}$ has multiple solutions. (A5, A8, A9)
- 3. Show that the vectors $\sin x$ and $\cos x$ are orthogonal in the inner product space $C_{0,2\pi}$ of continuous functions on $[0,2\pi]$ with the inner product of f and g defined as

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) dx.$$

(B8, B9, C15)

- 4. Find the projection of vector [1, 2, 3, 4] onto the line joining the points (0, 4, -3, 2) and (1, 4, 0, 2). (B3, B7, B8, C17)
- 5. Show that \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less, is isomorphic to \mathbb{R}^3 (actually construct the isomorphism). (C12, C13, C15)
- 6. Find the standard matrix representation (i.e. the representation with respect to the standard bases of \mathbb{R}^m and \mathbb{R}^n) of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by $T((x_1, x_2, x_3)) = (x_1 + x_2, x_2 + x_3, x_3 + x_1, x_1 + x_2 + x_3)$. (C7, C8)
- 7. Consider the space \mathcal{P}_3 of all polynomials of degree 3 or less. Find the coordinate vector of $x^3 + 3x^2 4x + 2$ relative to the ordered basis $(x, x^2 1, x^3, 2x^2)$. (C11, C6, A1).
- 8. Subspaces U and W of \mathbb{R}^n are orthogonal if $\vec{u} \cdot \vec{w} = 0$ for all $\vec{u} \in U$ and all $\vec{w} \in W$. Let U and W be orthogonal subspaces of \mathbb{R}^n , and let $\dim(U) = n \dim(W)$. Show that each subspace is the orthogonal complement of the other. (C18)

- 9. Transform the basis $\{(1,0,1),(0,1,2),(2,1,0)\}$ for \mathbb{R}^3 into an orthogonal basis using the Gram-Schmidt process. (C17, C19, C20, C21)
- 10. Prove that for $A = [a_{ij}]$ and $B = [b_{ij}]$ $n \times n$ matrices, we have $(AB)^T = B^T A^T$. (**D1**, **D4**)
- 11. Prove that if λ is an eigenvalue of an $n \times n$ matrix A, then the set E_{λ} consisting of the zero vector together with all eigenvectors of A for this eigenvalue λ is a subspace of n-space. (C4, D17, D19)
- 12. Diagonalize $A = \begin{bmatrix} 7 & 8 \\ -4 & -5 \end{bmatrix}$ and calculate A^{100} . (**D1**, **D17**, **D20**)