LINEAR ALGEBRA COMPREHENSIVE EXAM

Fall 2007, Prepared by Dr. Robert Gardner September 21, 2007

NAMESTUDENT NUMBER	
Be clear and give all details. Use all symbols correctly (such as equal signs). The be	old
faced numbers in parentheses indicate the number of the topics covered in that problems from the Study Guide. No calculators!!! You may omit two numbered problems. Indicate the problems you are omitting: and	
1. Find the solution set of $A\vec{x} = \vec{b}$ where	

 $A = \begin{bmatrix} 1 & -4 & 1 \\ 3 & -13 & 0 \\ 2 & -9 & -1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} -2 \\ -10 \\ -8 \end{bmatrix}$

and express the solution as a translation of a vector space. (A1, A7, B4)

- 2. Give three conditions on $n \times n$ matrix A which would (each) imply that the system $A\vec{x} = \vec{b}$ has a unique solution. Give two conditions which would (each) imply that $A\vec{x} = \vec{b}$ has multiple solutions. (A5, A8, A9)
- 3. Show that the vectors $\sin x$ and $\cos x$ are orthogonal in the inner product space $C_{0,2\pi}$ of continuous functions on $[0,2\pi]$ with the inner product of f and g defined as

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) dx.$$

(B8, B9, C15)

- **4.** Find the projection of vector [1, 2, 3, 4] onto the line joining the points (0, 4, -3, 2) and (1, 4, 0, 2). (**B3, B7, B8, C17**)
- **5.** Find the standard matrix representation (i.e. the representation with respect to the standard bases of \mathbb{R}^m and \mathbb{R}^n) of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by $T((x_1, x_2, x_3)) = (x_1 + x_2, x_2 + x_3, x_3 + x_1, x_1 + x_2 + x_3)$. (C7, C8)
- **6.** Do each of the following:
 - (a) What is the vector space \mathbb{R}^n ? (B1)
 - (b) What is the difference between a point in \mathbb{R}^n and a vector in \mathbb{R}^n ? (B3)
 - (c) What is a vector space isomorphism? (C13)

- 7. Consider the vector spaces $V = V' = \operatorname{span}\{\cos x, \sin x\}$ with ordered bases $B = B' = \{\cos x, \sin x\}$. Let $T: V \to V'$ be defined as the differentiation operator. Find the matrix A that represents T relative to B, B'. (C7, C8, C11, C15)
- 8. Let W be a subspace of \mathbb{R}^n and let \vec{b} be a vector in \mathbb{R}^n . Show that there is one and only one vector \vec{p} in W such that $\vec{b} \vec{p}$ is perpendicular to every vector in W. (C4, C18, C19)
- 9. Diagonalize $\begin{bmatrix} -3 & 5 \\ -2 & 4 \end{bmatrix}$ and find A^{100} . (D1, D17, D18, D20, D22)
- 10. (a) What is an elementary matrix? (D7)
 - (b) Express A and A^{-1} as a product of elementary matrices where $A = \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$. (D3, D7, D8, D9)