LINEAR ALGEBRA COMPREHENSIVE EXAM

Summer 2016, Prepared by Dr. Robert Gardner

August 5, 2016

NAME _____ Start Time: _____ End Time: _____

Be clear and **give all details**. Use symbols correctly (such as equal signs). The numbers in bold faced parentheses indicate the number of the topics covered in that problem from the Study Guide. **No calculators and turn off your cell phones!** You may omit two problems. Indicate which two problems you are omitting: _____ and _____. There is a three hour time limit.

1. Find the solution of $A\vec{x} = \vec{b}$ where

	1	-4			$\begin{bmatrix} -2 \end{bmatrix}$
A =	3	-13	0	and $\vec{b} =$	-10
	2		-1		-8

and express the solution as a translation of a vector space. (A1, A7, B4)

- 2. Let A be an $m \times n$ matrix. Show that $\{\vec{x} \mid A\vec{x} = \vec{0}\}$ is a subspace of \mathbb{R}^n . (A8, A9, C4)
- **3.** Consider the inner product space $C_{-\pi,\pi}$ of continuous functions on $[-\pi,\pi]$ with the inner product of f and g defined as

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(x)g(x) \, dx.$$

In the vector space $C_{-\pi,\pi}$ find the angle between $\cos x$ and $\sin x$. (B8, B9, C15)

- 4. State the definition of vector space. (C1)
- 5. Consider the vectors $\vec{v}_1 = x^2 2x + 1$, $\vec{v}_2 = 2x^2 + 5x + 11$, and $\vec{v}_3 = 3x^2 + 7x + 17$ in \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less. Are these vectors linearly independent? Explain using linear algebra and ordered bases. (C5, C11, C15)
- 6. Find the standard matrix representation (i.e. the representation with respect to the standard bases of \mathbb{R}^m and \mathbb{R}^n) of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ defined by $T((x_1, x_2, x_3)) = (x_1 + x_2, x_2 + x_3, x_3 + x_1, x_1 + x_2 + x_3)$. (C7, C8)

7. Express A and A^{-1} as products of elementary matrices where

$$A = \left[\begin{array}{cc} 2 & 9 \\ 1 & 4 \end{array} \right].$$

(D3, D7, D8, D9)

- 8. Transform the basis {(1,0,1), (0,1,2), (2,1,0)} for ℝ³ into an orthogonal basis using the Gram-Schmidt process. (C17, C19, C20, C21)
- 9. Find two of the eigenvalues (they are integers) and two of the eigenvectors for (A9, D14, D17, D18, D19):

$$A = \begin{bmatrix} -2 & 0 & 0 \\ -5 & -2 & -5 \\ 5 & 0 & 3 \end{bmatrix}.$$

10. Consider

$$A = \begin{bmatrix} 2 & 2 & 0 & 4 \\ 3 & 3 & 2 & 2 \\ 0 & 1 & 3 & 2 \\ 2 & 0 & 2 & 1 \end{bmatrix}.$$

Put A in a row echelon form, keeping track of how each row operation affects the determinant. Then calculate the determinant of A. (A4, D15)