LINEAR ALGEBRA COMPREHENSIVE EXAM

Summer 2008, Prepared by Dr. Robert Gardner August 8, 2008

NAME	_ STUDENT NUMBER
Be clear and give all details . Use symbols	s correctly (such as equal signs). The numbers in bold
faced parentheses indicate the number of the	e topics covered in that problem from the Study Guide.
You may omit two numbered problems. Ind	icate which two problems you are omitting: and
NO CALCULATORS!!! Time limit:	3 hours.

1. Consider the matrix

$$A = \left[\begin{array}{rrrrr} -1 & 3 & 0 & 1 & 4 \\ 1 & -3 & 0 & 0 & -1 \\ 2 & -6 & 2 & 4 & 0 \\ 0 & 0 & 1 & 3 & -4 \end{array} \right].$$

Put A in (1) row echelon form, and (2) reduced row echelon form. At each step, tell the elementary row operation you are using. (A3, A4, A5)

2. State three conditions on $n \times n$ matrix A which would (each) imply that the system $A\vec{x} = \vec{b}$ has a unique solution. Does the system

$$\begin{bmatrix} 2 & 4 & -2 \\ 4 & 8 & 3 \\ -1 & -3 & 0 \end{bmatrix} \vec{x} = \vec{0}$$

have a unique solution (explain)? (A5, A8, A9)

- **3.** Consider the plane in \mathbb{R}^3 which contains the vectors [1,2,3] and [4,5,6] and passes through the point (7,8,9). Find the equation of the plane (in terms of x,y and z coordinates) and express the plane as a translation of a vector space. (**B4**, **B12**)
- **4.** State the "Fundamental Theorem of Finite Dimensional Vector Spaces" (which deals with isomorphisms of vector spaces). Let V_1 and V_2 be vector spaces with real scalars. What conditions must be satisfied for $\pi: V_1 \to V_2$ to be an isomorphism? Are the vector spaces \mathbb{R}^n and \mathbb{C}^n isomorphic? Explain. (**B4, B12**)

- 5. Consider the vectors $\vec{v}_1 = x^2 2x + 1$, $\vec{v}_2 = 2x^2 + 5x + 11$, and $\vec{v}_3 = 3x^2 + 7x + 17$ in \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less. Are these vectors linearly independent? Explain. (C5, C11, C15)
- **6.** Find the projection of x onto $\sin x$ in the inner product space $C_{0,\pi}$ of continuous functions on $[0,\pi]$ with the inner product of f and g defined as

$$\langle f, g \rangle = \int_0^{\pi} f(x)g(x) dx.$$

(C15, C17)

- 7. Let A be an $n \times n$ matrix. Prove that the collection of all solutions to the equation $A\vec{x} = \vec{0}$ form a subspace of \mathbb{R}^n . (A9, C2, C4)
- 8. Express A and A^{-1} as products of elementary matrices where

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right].$$

(D3, D7, D8, D9)

- 9. Use the Gram-Schmidt process to find an orthonormal basis for the subspace span $\{[1, 2, 0, 2], [2, 1, 1, 1], [1, 0, 1, 1]\}$ of \mathbb{R}^4 . (C17, C19, C20, C21)
- **10.** Diagonalize $A = \begin{bmatrix} 7 & 8 \\ -4 & -5 \end{bmatrix}$ and calculate A^{100} . (**D1**, **D17**, **D20**)