LINEAR ALGEBRA COMPREHENSIVE EXAM

Summer 2007, Prepared by Dr. Robert Gardner August 10, 2007

NAME	STUDENT NUMBER_		
Be clear and give all details. U	se symbols correctly (such	as equal sign	s). The numbers in bold
faced parentheses indicate the number of the topics covered in that problem from the Study Guide.			
Indicate which two problems you	are omitting: and	d Th	ere is a three hour time
limit. No calculators!			

1. Find the solution of $A\vec{x} = \vec{b}$ where

$$A = \begin{bmatrix} 1 & -4 & 1 \\ 3 & -13 & 0 \\ 2 & -9 & -1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} -2 \\ -10 \\ -8 \end{bmatrix}$$

and express the solution as a translation of a vector space. (A1, A7, B4)

- **2.** Let A be an $m \times n$ matrix. Show that $\{\vec{x} \mid A\vec{x} = \vec{0}\}$ is a subspace of \mathbb{R}^n . (A8, A9, C4)
- 3. Consider the inner product space $C_{-\pi,\pi}$ of continuous functions on $[-\pi,\pi]$ with the inner product of f and g defined as

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) g(x) dx.$$

In the vector space $C_{-\pi,\pi}$ find the angle between $\cos x$ and $\sin x$. (B8, B9, C15)

- 4. State the definition of vector space. (C1)
- 5. Consider the vectors $\vec{v}_1 = x^2 2x + 1$, $\vec{v}_2 = 2x^2 + 5x + 11$, and $\vec{v}_3 = 3x^2 + 7x + 17$ in \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less. Are these vectors linearly independent? Explain. (C5, C11, C15)
- **6.** Let $T: \mathcal{P}_3 \to \mathcal{P}_3$ be defined by T(p(x)) = D(p(x)), the derivative of p(x). Let the ordered basis for \mathcal{P}_3 be $B = B' = (x^3, x^2, x, 1)$. Find the matrix A which represents T relative to B, B'. (C7, C8, C11, C15)

7. Express A and A^{-1} as products of elementary matrices where

$$A = \left[\begin{array}{cc} 2 & 9 \\ 1 & 4 \end{array} \right].$$

(D3, D7, D8, D9)

- 8. Let A and C be matrices such that the product AC is defined. Prove that the column space of AC is contained in the column space of A. (D6, D10)
- 9. Find the eigenvalues (they are integers) and the eigenvectors of (A9, D14, D17, D18, D19):

$$A = \left[\begin{array}{rrr} -2 & 0 & 0 \\ -5 & -2 & -5 \\ 5 & 0 & 3 \end{array} \right].$$

10. Consider

$$A = \left[\begin{array}{cccc} 2 & 2 & 0 & 4 \\ 3 & 3 & 2 & 2 \\ 0 & 1 & 3 & 2 \\ 2 & 0 & 2 & 1 \end{array} \right].$$

Put A in a row echelon form, keeping track of how each row operation affects the determinant. Then calculate the determinant of A. (A4, D15)