1. Express the solution of this system as a translation of a vector space:

\[
\begin{align*}
3x_1 + 2x_2 + x_3 &= 5 \\
-5x_1 - 3x_2 - x_3 + x_4 &= -7 \\
5x_1 + 4x_2 + 3x_3 + 2x_4 &= 6 \\
x_1 + x_2 + x_3 + x_4 &= 1
\end{align*}
\]

(A1, A2, A3, A7, B4)

2. Consider the matrix

\[
A = \begin{bmatrix}
1 & 14 & -4 & 7 \\
-3 & -6 & 0 & -9 \\
5 & -8 & 6 & 9 \\
2 & 13 & -3 & 9
\end{bmatrix}
\]

Which columns contain pivots? What is a basis for the column space? (A3, A4, A5, D6)

3. Give three conditions on \(n \times n \) matrix \(A \) which would (each) imply that the system \(Ax = b \) has a unique solution. Give two conditions which would (each) imply that \(Ax = b \) has multiple solutions. (A5, A8, A9)

4. Find the projection of vector \([1, 2, 3, 4]\) onto the line joining the points \((0, 4, -3, 2)\) and \((1, 4, 0, 2)\). (B3, B7, B8, C17)

5. Use the Schwarz Inequality, which states that for vectors \(\vec{v} \) and \(\vec{w} \) in an inner-product space, we have \(|\langle \vec{v}, \vec{w} \rangle| \leq ||\vec{v}||||\vec{w}|| \), to prove the Triangle Inequality in an inner-product space. (B8, B10, C15)
6. Consider the vectors \(\vec{v}_1 = x^2 + 2x + 3 \), \(\vec{v}_2 = 7x^2 - 5x + 2 \), and \(\vec{v}_3 = -4x^2 + 2x - 9 \) in \(P_2 \), the vector space of all polynomials of degree 2 or less. Are these vectors linearly independent? Explain. (C5, C11, C15)

7. Find the orthogonal complement of \(\text{span}\{[-1, 2, 0, 3], [0, 4, 1, -2]\} \) in \(\mathbb{R}^4 \). (C3, C18)

8. Consider

\[
A = \begin{bmatrix}
2 & 2 & 0 & 4 \\
3 & 3 & 2 & 2 \\
0 & 1 & 3 & 2 \\
2 & 0 & 2 & 1
\end{bmatrix}.
\]

Put \(A \) in a row echelon form, keeping track of how each row operation affects the determinant. Then calculate the determinant of \(A \). (A4, D15)

9. Prove that if \(\lambda \) is an eigenvalue of an \(n \times n \) matrix \(A \), then the set \(E_\lambda \) consisting of the zero vector together with all eigenvectors of \(A \) for this eigenvalue \(\lambda \) is a subspace of \(n \)-space. (C4, D17, D19)

10. Diagonalize \(A = \begin{bmatrix} 7 & 8 \\ -4 & -5 \end{bmatrix} \) and calculate \(A^{100} \). (D1, D17, D20)