LINEAR ALGEBRA COMPREHENSIVE EXAM

Spring 2015b, Prepared by Dr. Robert Gardner May 1, 2015

NAME	Start Time:	End Tim	ne:	_
Be clear and give all details. Use symbols	correctly (such as	equal signs).	The number	ers in bold
faced parentheses indicate the number of the	topics covered in t	hat problem f	rom the Stu	ıdy Guide.
No calculators and turn off your cell p	hones! Use the p	aper provided	d and only	write on
one side. You may omit two problems. Indi	cate which two pro	oblems you are	e omitting:	$\underline{}$ and
There is a three hour time limit.				

1. State three conditions on $n \times n$ matrix A which would (each) imply that the system $A\vec{x} = \vec{b}$ has a unique solution. Does the system

$$\begin{bmatrix} 2 & 4 & -2 \\ 4 & 8 & 3 \\ -1 & -3 & 0 \end{bmatrix} \vec{x} = \vec{0}$$

have a unique solution (explain)? (A5, A8, A9)

- 2. Consider the plane in \mathbb{R}^3 which contains the vectors [1,2,3] and [4,5,6] and passes through the point (7,8,9). Find the equation of the plane (in terms of x,y and z coordinates) and express the plane as a translation of a vector space. (**B4**, **B12**)
- 3. Find the projection of [1, 2, 1, 2] onto the plane x + y + z + w = 0. Explain your reasoning! (B3, B7, B8, C17, C19)
- **4.** State the definition of *vector space*. Give an example of a vector space other than \mathbb{R}^n or \mathbb{C}^n . (C1)
- 5. Transform the basis $\{[1,1,1],[1,0,1],[0,1,1]\}$ for \mathbb{R}^3 into an orthogonal basis using the Gram-Schmidt process. (C17, C19, C20, C21)
- 6. Consider the vectors $\vec{v}_1 = x^2 + 2x + 3$, $\vec{v}_2 = 7x^2 5x + 2$, and $\vec{v}_3 = -4x^2 + 2x 9$ in \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less. Are these vectors linearly independent? Explain. (C5, C11, C15)

7. Consider

$$\begin{bmatrix} 0 & 6 & 6 & 3 \\ 1 & 2 & 1 & 1 \\ 4 & 1 & -3 & 4 \\ 1 & 3 & 2 & 0 \end{bmatrix}.$$

Find the rank, a basis for the row space, and a basis for the column space. (A4, A5, D6, D10)

8. (a) What is an elementary matrix? (D7)

- (b) Express A and A^{-1} as products of elementary matrices where $A = \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$. (D3, D7, D8, D9)
- 9. Prove that if λ is an eigenvalue of an $n \times n$ matrix A, then the set E_{λ} consisting of the zero vector together with all eigenvectors of A for this eigenvalue λ is a subspace of n-space. (C4, D17, D19)

10. Find the L/U decomposition of the matrix

$$A = \left[\begin{array}{rrr} 1 & 3 & -1 \\ 2 & 8 & 4 \\ -1 & 3 & 4 \end{array} \right].$$

Explain your reasoning. (D23)