LINEAR ALGEBRA COMPREHENSIVE EXAM

Spring 2009, Prepared by Dr. Robert Gardner

May 1, 2009

____STUDENT NUMBER ____

Be clear and **give all details**. Use all symbols correctly (such as equal signs). The bold faced numbers in parentheses indicate the number of the topics covered in that problem from the Study Guide. **No calculators!!!** You may omit two numbered problems. Indicate which two problems you are omitting: _____ and ____.

1. Find the solution set of $A\vec{x} = \vec{b}$ where

$$A = \begin{bmatrix} 1 & -4 & 1 \\ 3 & -13 & 0 \\ 2 & -9 & -1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} -2 \\ -10 \\ -8 \end{bmatrix}$$

and express the solution as a translation of a vector space. (A1, A7, B4)

- 2. Give three conditions on $n \times n$ matrix A which would (each) imply that the system $A\vec{x} = \vec{b}$ has a unique solution. Give two conditions which would (each) imply that $A\vec{x} = \vec{b}$ has multiple solutions. (A5, A8, A9)
- **3.** Show that the vectors $\sin x$ and $\cos x$ are orthogonal in the inner product space $C_{0,2\pi}$ of continuous functions on $[0, 2\pi]$ with the inner product of f and g defined as

$$\langle f,g\rangle = \int_0^{2\pi} f(x)g(x)\,dx.$$

(**B8**, **B9**, **C15**)

- 4. Find the projection of vector [1, 2, 3, 4] onto the line joining the points (0, 4, −3, 2) and (1, 4, 0, 2). (B3, B7, B8, C17)
- 5. Find the standard matrix representation (i.e. the representation with respect to the standard bases of \mathbb{R}^m and \mathbb{R}^n) of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ defined by $T((x_1, x_2, x_3)) = (x_1 + x_2, x_2 + x_3, x_3 + x_1, x_1 + x_2 + x_3)$. (C7, C8)
- **6.** Do each of the following:
 - (a) What is the vector space \mathbb{R}^n ? (B1)
 - (b) What is the difference between a point in \mathbb{R}^n and a vector in \mathbb{R}^n ? (B3)
 - (c) What is a vector space isomorphism? (C13)

NAME

- 7. Consider the vector spaces $V = V' = \text{span}\{\cos x, \sin x\}$ with ordered bases $B = B' = \{\cos x, \sin x\}$. Let $T : V \to V'$ be defined as the differentiation operator. Find the matrix A that represents T relative to B, B'. (C7, C8, C11, C15)
- 8. Show that \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less, is isomorphic to \mathbb{R}^3 (actually construct the isomorphism and verify that it is an isomorphism). (C12, C13, C15)
- 9. Find the eigenvalues (they are integers) and the eigenvectors of (A9, D14, D17, D18, D19):

$$A = \left[\begin{array}{rrr} -2 & 0 & 0 \\ -5 & -2 & -5 \\ 5 & 0 & 3 \end{array} \right].$$

10. (a) What is an elementary matrix? (D7)

(b) Express A and A^{-1} as a product of elementary matrices where $A = \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$. (D3, D7, D8, D9)