LINEAR ALGEBRA COMPREHENSIVE EXAM

Spring 2005, Prepared by Dr. Robert Gardner

April 8, 2005

NAME ______ STUDENT NUMBER _____

Be clear and **give all details**. Use symbols correctly (such as equal signs). The numbers in bold faced parentheses indicate the number of the topics covered in that problem from the Study Guide. **No calculators!** You may omit two problems. Indicate which two problems you are omitting: ______ and _____. There is a three hour time limit.

- Prove that a linear system of equations with two different solutions has an infinite number of solutions. (A1, A6, C7)
- 2. Express solutions of the system

x_1	—	$2x_2$	+	x_3	—	x_4	=	0
$2x_1$	—	$3x_2$	+	$2x_3$	—	$3x_4$	=	0
$3x_1$	—	$5x_2$	+	$3x_3$	—	$4x_4$	=	0
$-x_1$	+	x_2	_	x_3	+	$2x_4$	=	0

as the translation of a vector space. (A1, A2, A3, A7, A9, B4)

3. Consider the inner product space $C_{-\pi,\pi}$ of continuous functions on $[-\pi,\pi]$ with the inner product of f and g defined as

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(x)g(x) \, dx$$

In the vector space $C_{-\pi,\pi}$ find the angle between $\cos x$ and $\sin x$. (B8, B9, C15)

- 4. Use the Schwarz Inequality, which states that for vectors v and w in an inner-product space, we have |⟨v, w⟩| ≤ ||v|||w|| to prove the Triangle Inequality in an inner-product space. (B8, B10, C15)
- 5. Find the projection of [1, 2, 1, 2] onto the plane x + y + z + w = 0. (B3, B7, B8, C17, C19)
- 6. Do each of the following:
 - (a) What is the vector space \mathbb{R}^n ? (B1)
 - (b) What is the difference between a point in \mathbb{R}^n and a vector in \mathbb{R}^n ? (B3)
 - (c) What is a vector space isomorphism? (C13)

- 7. Consider the vector spaces V = V' = span{cos x, sin x} with ordered bases B = B' = {cos x, sin x}. Let T : V → V' be defined as the differentiation operator. Find the matrix A that represents T relative to B, B'. (C7, C8, C11, C15)
- 8. Let W be a subspace of \mathbb{R}^n and let \vec{b} be a vector in \mathbb{R}^n . Show that there is one and only one vector \vec{p} in W such that $\vec{b} \vec{p}$ is perpendicular to every vector in W. (C4, C18, C19)
- 9. Diagonalize $\begin{bmatrix} -3 & 5 \\ -2 & 4 \end{bmatrix}$ and find A^{100} . (D1, D17, D18, D20, D22)
- 10. (a) What is an elementary matrix? (D7)

(b) Express A and A^{-1} as a product of elementary matrices where $A = \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$. (D3, D7, D8, D9)