LINEAR ALGEBRA COMPREHENSIVE EXAM

Spring 2003, Prepared by Dr. Robert Gardner

April 11, 2003

STUDENT NUMBER

Be clear and **give all details**. Use all symbols correctly (such as equal signs). The bold faced numbers in parentheses indicate the number of the topics covered in that problem from the Study Guide. **No calculators!!!** You may omit two numbered problems. Indicate which two problems you are omitting: _____ and ____.

1. Express the solution of this system as a translation of a vector space:

6	=			x_3	+	$2x_2$	+	$3x_1$
4	=	x_4	+	x_3	+	x_2	+	x_1
14	=	$2x_4$	+	$3x_3$	+	$4x_2$	+	$5x_1$
-8.	=	x_4	+	x_3	—	$3x_2$	—	$-5x_1$

(A1, A2, A3, A7, B4)

2. Give three conditions on $n \times n$ matrix A which would (each) imply that the system $A\vec{x} = \vec{b}$ has a unique solution. Does the system

$$A = \begin{bmatrix} 1 & 2 & 2 \\ -2 & 5 & 7 \\ 1 & 11 & 16 \end{bmatrix} \vec{x} = \begin{bmatrix} 10 \\ 31 \\ 70 \end{bmatrix}$$

have a unique solution (explain)? (A5, A8, A9)

3. Consider the inner product space $C_{-\pi,\pi}$ of continuous functions on $[-\pi,\pi]$ with the inner product of f and g defined as

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(x)g(x) \, dx.$$

One can show that

$$\left| \int_{-\pi}^{\pi} f(x)g(x) \, dx \right| \le \sqrt{\int_{-\pi}^{\pi} (f(x))^2 \, dx} \sqrt{\int_{-\pi}^{\pi} (g(x))^2 \, dx}.$$

Use this fact (which is Schwarz's Inequality in $C_{-\pi,\pi}$) to prove the triangle inequality in this space. (B8, B10, C15)

- 4. In the vector space $C_{-\pi,\pi}$ of problem 3, find the angle between $\cos x$ and $\sin x$. (B8, B9, C15)
- 5. State the definition of vector space. (C1)

NAME ____

- 6. Find the standard matrix representation (i.e. the representation with respect to the standard bases of \mathbb{R}^m and \mathbb{R}^n) of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ defined by $T((x_1, x_2, x_3)) = (x_1 + x_2, x_2 + x_3, x_3 + x_1, x_1 + x_2 + x_3)$. (C7, C8)
- 7. Consider the space \mathcal{P}_3 of all polynomials of degree 3 or less. Find the coordinate vector of $x^3 + 3x^2 4x + 2$ relative to the ordered basis $(x, x^2 1, x^3, 2x^2)$. (C11, C6, A1).
- 8. Transform the basis $\{[1, 1, 1], [1, 0, 1], [0, 1, 1]\}$ for \mathbb{R}^3 into an orthogonal basis using the Gram-Schmidt process. (C17, C19, C20, C21)
- 9. Express A and A^{-1} as products of elementary matrices where

$$A = \left[\begin{array}{cc} 2 & 9 \\ 1 & 4 \end{array} \right].$$

(D3, D7, D8, D9)

- 10. Let A and C be matrices such that the product AC is defined. Prove that the column space of AC is contained in the column space of A. (**D6**, **D10**)
- 11. Find the eigenvalues (they are integers) and the eigenvectors of (A9, D14, D17, D18, D19):

$$A = \begin{bmatrix} -2 & 0 & 0\\ -5 & -2 & -5\\ 5 & 0 & 3 \end{bmatrix}.$$

12. Consider

$$A = \begin{bmatrix} 2 & 2 & 0 & 4 \\ 3 & 3 & 2 & 2 \\ 0 & 1 & 3 & 2 \\ 2 & 0 & 2 & 1 \end{bmatrix}$$

Put A in a row echelon form, keeping track of how each row operation affects the determinant. Then calculate the determinant of A. (A4, D15)