LINEAR ALGEBRA COMPREHENSIVE EXAM

Spring 2009, Prepared by Dr. Robert Gardner January 30, 2009

NAMESTUDENT NUMBER	
Be clear and give all details. Use all symbols correctly (such as equal signs). The bold	
faced numbers in parentheses indicate the number of the topics covered in that problem	
from the Study Guide. No calculators!!! You may omit two numbered problems. Indicate	
which two problems you are omitting: and	

1. Express the solution of this system as a translation of a vector space:

(A1, A2, A3, A7, B4)

2. Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & 14 & -4 & 7 \\ -3 & -6 & 0 & -9 \\ 5 & -8 & 6 & 9 \\ 2 & 13 & -3 & 9 \end{array} \right].$$

Which columns contain pivots? What is a basis for the column space? (A3, A4, A5, D6)

- 3. Consider the plane in \mathbb{R}^3 which contains the vectors [1,2,3] and [4,5,6] and passes through the point (7,8,9). Find the equation of the plane (in terms of x, y, and z coordinates) and express the plane as a translation of a vector space. (**B4**, **B12**)
- **4.** State the "Fundamental Theorem of Finite Dimensional Vector Spaces" (which deals with isomorphisms of vector spaces). Let V_1 and V_2 be vector spaces with real scalars. What conditions must be satisfied for $\pi: V_1 \to V_2$ to be an isomorphism? Are the vector spaces \mathbb{R}^n and \mathbb{C}^n isomorphic? Explain. (**B4, B12**)
- **5.** Let A be an $n \times n$ matrix. Prove that the collection of all solutions to the equation $A\vec{x} = \vec{0}$ form a subspace of \mathbb{R}^n . (A9, C2, C4)

- **6.** Consider the vectors $\vec{v}_1 = x^2 + 2x + 3$, $\vec{v}_2 = 7x^2 5x + 2$, and $\vec{v}_3 = -4x^2 + 2x 9$ in \mathcal{P}_2 , the vector space of all polynomials of degree 2 or less. Are these vectors linearly dependent? Explain. (C5, C11, C15)
- 7. Use the Gram-Schmidt process to find an orthonormal basis for the subspace span $\{[1, 2, 0, 2], [2, 1, 1], [1, 0, 1, 1]\}$ of \mathbb{R}^4 . (C17, C19, C20, C21)
- 8. (a) What is an elementary matrix? (D7)
 - (b) Express A and A^{-1} as a product of elementary matrices where $A = \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$. (D3, D7, D8, D9)
- 9. Prove that if λ is an eigenvalue of an $n \times n$ matrix A, then the set E_{λ} consisting of the zero vector together with all eigenvectors of A for this eigenvalue λ is a subspace of n-space. (C4, D17, D19)
- 10. Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. What is the eigenspace? (D12, D17, D18, D19)