LINEAR ALGEBRA COMPREHENSIVE EXAM

Spring 2003, Prepared by Dr. Robert Gardner January 28, 2003

NAME _				STUDENT N	UMBER			
Be clear	and give all	$\frac{1}{2}$ details.	Use all sy	mbols correctly	(such as	equal signs).	The bole	d faced
numbers	in parenthese	s indicate	the number	er of the topics	covered in	that problem	n from the	Study
Guide. I	No calculato	rs!!! You	may omit	two numbered	problems.	Indicate wh	ich two pr	oblems
you are	omitting:	$_$ and $_$	<u> </u>					

1. Express the solution of this system as a translation of a vector space:

$$3x_1 + 2x_2 + x_3 = 6$$

$$x_1 + x_2 + x_3 + x_4 = 4$$

$$5x_1 + 4x_2 + 3x_3 + 2x_4 = 14$$

$$-5x_1 - 3x_2 - x_3 + x_4 = -8.$$

(A1, A2, A3, A7, B4)

2. Give three conditions on $n \times n$ matrix A which would (each) imply that the system $A\vec{x} = \vec{b}$ has a unique solution. Does the system

$$A = \begin{bmatrix} 1 & 2 & 2 \\ -2 & 5 & 7 \\ 1 & 11 & 16 \end{bmatrix} \vec{x} = \begin{bmatrix} 10 \\ 31 \\ 70 \end{bmatrix}$$

have a unique solution (explain)? (A5, A8, A9)

3. Consider the inner product space $C_{-\pi,\pi}$ of continuous functions on $[-\pi,\pi]$ with the inner product of f and g defined as

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$$

One can show that

$$\left| \int_{-\pi}^{\pi} f(x)g(x) \, dx \right| \le \sqrt{\int_{-\pi}^{\pi} (f(x))^2 \, dx} \sqrt{\int_{-\pi}^{\pi} (g(x))^2 \, dx}.$$

Use this fact (which is Schwarz's Inequality in $C_{-\pi,\pi}$) to prove the triangle inequality in this space. (B8, B10, C15)

- 4. In the vector space $C_{-\pi,\pi}$ of problem 3, find the angle between $\cos x$ and $\sin x$. (B8, B9, C15)
- 5. State the definition of vector space. (C1)

- 6. Find the standard matrix representation (i.e. the representation with respect to the standard bases of \mathbb{R}^m and \mathbb{R}^n) of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by $T((x_1, x_2, x_3)) = (x_1 + x_2, x_2 + x_3, x_3 + x_1, x_1 + x_2 + x_3)$. (C7, C8)
- 7. Consider the space \mathcal{P}_3 of all polynomials of degree 3 or less. Find the coordinate vector of $x^3 + 3x^2 4x + 2$ relative to the ordered basis $(x, x^2 1, x^3, 2x^2)$. (C11, C6, A1).
- 8. Transform the basis $\{[1,1,1],[1,0,1],[0,1,1]\}$ for \mathbb{R}^3 into an orthogonal basis using the Gram-Schmidt process. (C17, C19, C20, C21)
- 9. Express A and A^{-1} as products of elementary matrices where

$$A = \left[\begin{array}{cc} 2 & 9 \\ 1 & 4 \end{array} \right].$$

(D3, D7, D8, D9)

- 10. Let A and C be matrices such that the product AC is defined. Prove that the column space of AC is contained in the column space of A. (**D6**, **D10**)
- 11. Find the eigenvalues (they are integers) and the eigenvectors of (A9, D14, D17, D18, D19):

$$A = \left[\begin{array}{rrr} -2 & 0 & 0 \\ -5 & -2 & -5 \\ 5 & 0 & 3 \end{array} \right].$$

12. Consider

$$A = \left[\begin{array}{cccc} 2 & 2 & 0 & 4 \\ 3 & 3 & 2 & 2 \\ 0 & 1 & 3 & 2 \\ 2 & 0 & 2 & 1 \end{array} \right].$$

Put A in a row echelon form, keeping track of how each row operation affects the determinant. Then calculate the determinant of A. (A4, D15)