CALCULUS COMPREHENSIVE EXAM

Spring 2010, Prepared by Dr. Jeff Knisley May 5, 2010

NAME STUDENT NUMBER

Be clear and **give all details**. Use symbols correctly (such as equal signs). The numbers in bold faced parentheses indicate the number of the topics covered in that problem from the Study Guide. **No calculators!** You may omit one problem from numbers 1 through 5 (which contain Calculus 1 material) and one problem from numbers 6 through 10 (which contain Calculus 2 material). Indicate which two problems you are omitting: _____ and _____. There is a three hour time limit.

- **1.** Do each of the following:
 - (a) State the definition of the limit of a function (that is, what does $\lim_{x \to a} f(x) = L$ mean?).
 - (b) Prove that if $\lim_{x \to a} f(x) = L$ and $k \neq 0$, then $\lim_{x \to a} (kf(x)) = kL$. (1)
- **2.** Do each of the following (3, 33):
 - (a) State the Sandwich Theorem (sometimes called the "Squeeze Theorem") for the limit of a function.
 - (b) Use the fact that $\sin \theta < \theta < \tan \theta$ for $\theta \in (0, \pi/2)$ to show that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ (WARNING: This is a two sided limit and the inequality is only known to hold for $\theta \in (0, \pi/2)$.)
- **3.** Consider $f(x) = \frac{x^3}{x(1-x^2)}$. Find the first and second derivative of f, find where f is increasing/decreasing, find where f is concave up/concave down, find the asymptotes of the graph of f, find the extrema of f, and graph y = f(x). (8, 14, 15, 16, 17)
- 4. For which two positive numbers whose sum is 10 is the sum of their squares a maximum?
- **5.** Do each of the following (23, 24, 35):
 - (a) State the two parts of the Fundamental Theorem of Calculus.
 - (b) Use the Fundamental Theorem of Calculus to evaluate $\int_0^{\pi/2} x \sin x \, dx$ and indicate with a star (*) where you are applying the Fundamental Theorem.
- 6. Find the length of $y = \cosh(x)$ for $x \in [0, 1]$ (23).

7. Evaluate (37, 38, 39):

- (a) lim x^x.
 (b) ∫[∞]_{-∞} 1/(1+x²) dx (use all notation correctly and don't write things that don't make sense).
 (c) Evaluate ∫[∞] 1/(x dx)
- (c) Evaluate $\int_{-\infty}^{\infty} \frac{1}{x^2} dx$.
- 8. Do each of the following (41, 43):
 - (b) Let {a_n} = {a₁, a₂, a₃, ...} be a sequence of real numbers. Define "lim_{n→∞} a_n = L."
 (c) Use the Integral Test to show that the harmonic series ∑₁ 1/n diverges.
- 9. Do each of the following (46):

(a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e. on what types of sets might the series converge conditionally, converge absolutely, or diverge?).

- (b) What is the radius of convergence for $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{\sqrt{n^2+3}}$ (give detailed reasons for your answer).
- 10. Do each of the following (44, 47):
 - (a) Use the MacLaurin series for e^x to find a series for $\int e^{-x^2} dx$.

(b) Estimate $\int_0^1 e^{-x^2} dx$ to the nearest 0.001 and explain why you know your answer has this level of accuracy.