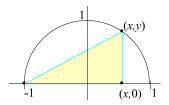
CALCULUS COMPREHENSIVE EXAM

Fall, 2010, Prepared by Dr. Jeff Knisley October 15, 2010


October 15, 2010

NAME

_ STUDENT NUMBER __

Be clear and **give all details**. Use symbols correctly (such as equal signs). The numbers in bold faced parentheses indicate the number of the topics covered in that problem from the Study Guide. **No calculators!** You may omit one problem from numbers 1 through 5 (which contain Calculus 1 material) and one problem from numbers 6 through 10 (which contain Calculus 2 material). Indicate which two problems you are omitting: _____ and _____. There is a three hour time limit.

- 1. (a) State the definition of the limit of a function (that is, what does $\lim_{x \to a} f(x) = L$ mean?). (b) Prove that if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ then $\lim_{x \to a} (f(x)) = L + M$ (1.2)
 - (b) Prove that if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, then $\lim_{x \to a} (f(x) + g(x)) = L + M$. (1, 2)
- 2. Do each of the following (5):
 - (a) State the Intermediate Value Theorem.
 - (b) Prove that $3^x = x^4$ for some x.
- 3. Prove that if f has a derivative at x = c, then f is continuous at x = c. (4,7)
- 4. A triangle has vertices at (-1, 0), (x, 0), and (x, y), where $x^2 + y^2 = 1$ and $y \ge 0$ (see below). For what point (x, y) on the unit circle is the area of the triangle a maximum?

5. (a) State the definition of *partition*, norm of a partition, Riemann sum, and definite integral for $\int_{a}^{b} f(x) dx$.

(b) Explain the difference between a definite integral and an indefinite integral (if any). (20, 21, 23)

- 6. Do each of the following:
 - (a) State the Fundamental Theorem of Calculus (both parts). (23)
 - (b) Use the Fundamental Theorem of Calculus to evaluate

$$\int_0^1 \frac{1 - x^2}{1 + x^2} \, dx$$

and indicate with a star (*) where you are applying the Fundamental Theorem. (24, 35)

7. Do each of the following.

(a) Evaluate
$$\lim_{x\to 0^+} (1+x)^{1/x}$$
. (31, 37)
(b) Evaluate $\int_{-\infty}^{\infty} \frac{dx}{|x|+1}$. (24, 38)
(c) Evaluate $\int_{-1}^{1} \frac{1}{x^2} dx$. (39)

- 8. Do each of the following (41, 43):

 - (a) State the definition of the limit of a sequence: lim_{n→∞} a_n = L.
 (b) State the definition of the sum of a series: ∑_{n=1}[∞] a_n = S.
 - (c) Use the Integral Test to show that a *p*-series with 0 diverges.
- 9. Consider $\sum_{n=1}^{\infty} \frac{n+1}{n!} \left(\frac{x}{2}\right)^n$. Find the interval of convergence, radius of convergence, and values of x for which the convergence is absolute or conditional. (44, 45, 46)
- 10. (a) Find a power series for $f(x) = x^2 e^{-x^2}$.
 - (b) Use your power series to calculate $\int_0^1 x^2 e^{-x^2} dx$ (as a series). How many nonzero terms of the series representation of this integral must be summed to approximate the integral to the nearest $\frac{1}{100}$? (44, 47)