CALCULUS COMPREHENSIVE EXAM

Fall 2003, Prepared by Dr. Robert Gardner

September 25, 2003

_ STUDENT NUMBER ___

Be clear and **give all details**. Use all symbols correctly (such as equal signs). The numbers in bold faced parentheses indicate the number of the topics covered in that problem from the Study Guide. **No calculators!** You may omit one problem from numbers 1 through (which contain Calculus 1 material) and one problem from numbers 6 through 10 (which contain Calculus 2 material). Indicate which two problems you are omitting: _____ and _____. There is a three hour time limit.

- 1. (a) State the definition of the limit of a function (that is, what does $\lim_{x \to a} f(x) = L$ mean?).
 - (b) Prove that if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, then $\lim_{x \to a} (f(x) + g(x)) = L + M$. (1,2)
- 2. Prove that if f has a derivative at x = c, then f is continuous at x = c. (4,7)
- 3. (a)What does it mean for f(x) to be implicit to the equation F(x, y) = 0? (b) Find y' if $\sin(xy) = \ln(x \cot y)$. (8, 10, 31, 34)
- 4. Find the volume of the largest right circular cylinder which can be inscribed in a right circular cone of height 3 and base radius 1. The volume of a right circular cylinder of radius r and height h is $V = \pi r^2 h$ and the volume of a right circular cone of height H and base radius R is $V = \frac{1}{3}\pi R^2 H$. (18)
- 5. (a) State the Fundamental Theorem of Calculus (both parts).
 (b) Evaluate ∫₁^e ln x dx (HINT: use parts) and indicate with a star (*) where you have used the Fundamental Theorem of Calculus in your computations. (23, 24, 31)
- 6. Consider a cylindrical tank of height 10 ft and radius 4 ft. If the tank is full of water, find the work required to pump the water out of the top of the tank. The weight-density of water is 62.4 lb/ft³. Include units! (27)
- 7. (a) Use the definition of y = tan⁻¹x (in terms of the tangent function) and implicit differentiation to find y' = d/dx [tan⁻¹x].
 (b) Evaluate ∫ dx/(x² 2x + 5). (28, 34, 35)
- 8. (a) If f is continuous on $[a, c) \cup (c, b]$ then state the definition of $\int_{a}^{b} f(x) dx$. That is, how do you integrate over a discontinuity? You may assume the usual definition for integrals of continuous functions has been established.
 - (b) Evaluate $\int_{0}^{2} \frac{1}{(x-1)^{2}} dx$. (c) Evaluate $\lim_{x \to 0^{+}} x^{x}$. (37, 39)

NAME

- 9. State the Integral Test (which concerns the convergence of a positive term series). Show that for p > 1, the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. (38, 43)
- 10. Find a MacLaurin Series for $f(x) = e^x$ (show your work). Where does the series converge absolutely? Where does it converge conditionally? Where does it diverge? Use the series to verify that $\int e^x dx = e^x + C$.